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Proteomic profiling describes the molecular landscape of
proteins in cells immediately available to sense, trans-
duce, and enact the appropriate responses to extracellu-
lar queues. Transcriptional profiling has proven invaluable
to our understanding of cellular responses; however, in-
sights may be lost as mounting evidence suggests tran-
script levels only moderately correlate with protein levels
in steady state cells. Mass spectrometry-based quantita-
tive proteomics is a well-suited and widely used analytical
tool for studying global protein abundances. Typical pro-
teomic workflows are often limited by the amount of sam-
ple input that is required for deep and quantitative pro-
teome profiling. This is especially true if the cells of
interest need to be purified by fluorescence-activated cell
sorting (FACS) and one wants to avoid ex vivo culturing.
To address this need, we developed an easy to imple-
ment, streamlined workflow that enables quantitative pro-
teome profiling from roughly 2 pg of protein input per
experimental condition. Utilizing a combination of facile
cell collection from cell sorting, solid-state isobaric label-
ing and multiplexing of peptides, and small-scale fraction-
ation, we profiled the proteomes of 12 freshly isolated,
primary murine immune cell types. Analyzing half of the
3e5 cells collected per cell type, we quantified over 7000
proteins across 12 key immune cell populations directly
from their resident tissues. We show that low input pro-
teomics is precise, and the data generated accurately
reflects many aspects of known immunology, while ex-
panding the list of cell-type specific proteins across the
cell types profiled. The low input proteomics methods we
developed are readily adaptable and broadly applicable to

any cell or sample types and should enable proteome
profiling in systems previously unattainable. Molecular
& Cellular Proteomics 18: 995-1009, 2019. DOI: 10.1074/
mcp.RA118.001259.

Proteome-wide measurements provide a more functionally
relevant snapshot of cell states than transcriptional profiling
alone. There is increasing evidence that steady-state meas-
urements of MRNA levels only partially reflect the functional
potential of a cell (1-5), whereas proteins are immediately
available to sense and transduce extracellular cues and acti-
vate transcriptional responses to ultimately remodel the tran-
scriptome/proteome. When used in combination, proteome
profiling can reveal insights into regulatory steps such as the
post-transcriptional, translational, and the post-translational
levels (referred to hereafter as post-transcriptional) that can
be missed with exome sequencing alone (6-9).

A major drawback for proteomic analyses is the high
amount of protein input required, which can be too demand-
ing for many biological systems. Typical sample preparation
for mass spectrometry-based proteomics requires relatively
large amounts of protein per sample (= 50 ng) per experi-
mental condition. Samples such as cells purified by fluores-
cence-activated cell sorting (FACS)', needle-core biopsies,
and laser capture micro-dissected (LCM) tissue samples often
yield low micrograms of protein per condition, preventing
deep and quantitative global protein measurements using
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conventional proteomic sample preparation and analysis
methods.

Immune cells comprise a wide variety of functionally dis-
tinct cell types and are most often characterized and classi-
fied by their transcriptional profiles, or a small set of protein
surface markers (10-14). Previous studies profiling immune
cell proteomes with liquid chromatography-mass spectrome-
try (LC-MS) have either not been input limited (human periph-
eral blood immune cells) or have expanded and differentiated
purified murine immune cells in culture (15-19). Having rela-
tive protein abundances across the mouse immune system
would provide a useful resource for future immunological
studies in a genetically tractable organism.

Although powerful alternative approaches have been dem-
onstrated for low input proteomics they require highly spe-
cialized equipment or expertise, or fall short of reaching an
appreciable depth of coverage (20-22). de Graaf and col-
leagues developed a quantitative microproteomics approach
for analysis of LCM samples and applied it to the analysis of
murine kidney cells (23). A depth of around 4500 distinct
proteins was achieved from low micrograms of total protein
when samples were prepared using an automated liquid han-
dling system (23). To date, no approaches suitable for deep,
quantitative profiling of FAC-sorted cells have been reported.
Here, we describe a simple to implement sample preparation
protocol for TMT-based proteomic analysis of FAC-sorted
cells that minimizes sample handling steps and processing
time. The method combines efficient cell collection from a cell
sorter, improved peptide labeling for sample multiplexing, and
small-scale fractionation. Specialized equipment such as lig-
uid handling robotics are not needed for these sample proc-
essing steps, making the method adaptable by most pro-
teomics laboratories. Using the approach, we profiled 12
primary, murine immune cell types straight from FACS purifi-
cation to a depth of over 7000 proteins, collecting 3e5 cells
(~2 wg/sample) and injecting half for analysis. Low input
proteomics of freshly isolated cells provides high quality,
quantitative proteomic data that strongly reflects known as-
pects of the immune system. Comparing our proteomic data
to publicly available Immunological Genome Consortium (Im-
mgen) transcriptional profiles, we find evidence for post-tran-
scriptional regulation at the global scale.

EXPERIMENTAL PROCEDURES

Cell Isolation—Five-week-old male C57BL/6J mice were pur-
chased from the Jackson Laboratory (Bar Harbor, ME) and were
analyzed at 6 weeks of age. Immunocytes from pools of 3 mice were
double sorted for high purity by flow cytometry (double-sorting) on
a BD Aria instrument according to ImmGen protocols (33 and
immgen.org). B cells, T4 cells, T8 cells, regulatory T cells, 8T cells,
NKT cells, NK cells, and GNs were all obtained from spleens homog-

" The abbreviations used are: FACS, fluorescence-activated cell
sorting; LCM, laser capture micro-dissected; frINT, fractional inten-
sity; XIC, extracted ion chromatogram; TIC, total ion current.

enized through a 100 um cell strainer and treated with ACK lysing
buffer, 1 ml per 108 cells. Macrophages and B1a cells were obtained
by lavage of the peritoneal cavity with 7 ml PBS. Peritoneal mast cells
were obtained by lavage of the peritoneal cavity with 7 ml HBSS
containing 1 mm EDcell TA (11). All cells were stained and washed in
DMEM using the indicated antibodies described below. For mass spec-
trometry, 300,000 cells were sorted into collection microreactors (de-
scribed below), which were prepared by running 90 ul of phosphate
buffered saline (PBS) through the tips by centrifuge. Quartz filter tips
with sorted cells were briefly spun on a Galaxy Mini centrifuge (VWR
#C1213, Radnor, PA) for 30 s allow the FACS sheath fluid (PBS) to run
through the tip until only approximately one to five microliters of PBS
from the cell suspension remained and leaving the cells on the filter.
Finally, tips were frozen on dry ice before storage and cell lysis step. If
300,000 cells could not be collected from one sort, multiple tip digests
were spun onto the same Stage tip to achieve this total.

Antibodies and Markers— Antibodies used included: anti-CD19
(ebio1D3, eFluord50 for FACS), anti-CD43 (eBioR2/60, PE), anti-CD5
(563-7.3, APC), anti-ICAM2 (3C4, AlexaFluor488), anti-F4/80 (BMS8,
PE-Cy7), anti-TCRb (H57-597, eFluor450), anti-CD4 (RM4-5, APC-
eFluor780), anti-CD8 (53-6.7, APC), anti-IgM (eB121-15F9, FITC),
anti-CD19 (ebio1D3, PE-Cy7), anti-B220 (RA3-6B2, eFluord50), anti-
CD11c (N418, AlexaFluor700), anti-MHCII (M5/114.15.2, FITC), anti-
FIt3 (A2F10, PE), anti-Ter199 (TER-119, APC-eFluor780), anti-Ly6G
(R86-8C5, APC), anti-Ly6G (R86-8C5, APC-eFluor780), anti-NK1.1
(PK136, PE), anti-CD25 (PC61.5, APC), anti-TCRgd (ebioGL3, PE-
Cy7), anti-CD19 (ebio1D3, APC-eFluor780), anti-CD4 (RM4-5, FITC),
anti-CD8 (53-6.7, APC-eFluor780) from eBioscience, San Diego, CA,
and anti-CD45 (30-F11, APC-Cy7), anti-CD11c (N418, APC), anti-
CD11b (M1/70, APC), anti-CD8 (53-6.7, PacBlue), anti-CD19 (6D5,
PacBlue), anti-CD4 (GK1.5, PacBlue), anti-FceR1a (MAR-1, PE), anti-
CD117 (2B8, PE-Cy7) from BioLegend, San Diego, CA.

Collection Microreactor Tips—Gel loading tips (Ranin LTS 20 uL)
were packed with three to five punches of Whatman QM-A grade
SiO2 mesh (GE Life Sciences, Marlborough, MA) with a 16-gauge
blunt end needle to act as a small filter onto which cells accumulate
(49). For FACS collection, microreactor tips were inserted into the cap
of 1.5 ml centrifuge tubes that had a cross cut into them. This allows
the tip and tube to be spun in various types of benchtop centrifuges.
The quartz mesh was pre-wet with PBS prior to cell collection by
spinning in a Galaxy minicentrifuge for a quick pulse. Cells were
directly sorted into the microreactor tips and spun as above every 200
ul or so to remove the sheath fluid. This can be repeated two to three
times until the tip builds up backpressure from the high number of
cells. The cells are then washed with ice cold PBS and spun until near
dry. The tip is then kinked right below the quartz membrane and is
held shut by a 3-6 mm slice of a 200 ul pipette tips. For storage, the
kinked tip’s top is covered with parafiim and the entire device is
stored in a 1.5 ml microfuge tube.

For cell lysis, the tip remained kinked for the entire digestion
protocol. Ten microliters of 8 M urea, 10 mm TCEP and 10 mm
iodoacetamide in 50 mm ammonium bicarbonate (ABC) is added
using a gel loading tip to the surface of the quartz membrane. Pi-
petting up and down provided the shear forces to lyse the cells. For
many cell types, especially T cells, the lysate becomes viscous be-
cause of genomic DNA, indicating cell lysis. Lysis, reduction, and
alkylation is allowed to happen at room temperature for 30 min,
shaking in the dark. 50 mm ABC is used to dilute the urea to less than
2 M and the appropriate amount of trypsin for a 1:100 enzyme to
substrate ratio is added and allowed to incubate at 37 °C overnight.
Once digestion is completed the pipette tip ring is removed from the
kinked microreactor tip. The tip will remain partially kinked. The
kinked end of the tip is inserted into a premade, equilibrated Stage tip.
The microreactor-tip-in-a-Stage-tip contraption is spun at 3500 X g
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until the entire digest passes through the C18 resin. 75 ul 0.1% formic
acid (FA) is then added to the microreactor tip washing the quartz
membrane onto the C18 resin. This is repeated a second time. At this
stage, the digest has now been loaded directly from the microreactor
tip to the Stage tip C18 resin and is ready to be washed and eluted or
can go directly to on-column TMT labeling, starting at the HEPES/
TMT step (see below).

On-column TMT Labeling— Stage tips were packed with one punch
of C18 mesh (Empore) with a 16-gauge blunt end needle. Resin was
conditioned with 50 ul methanol (MeOH), followed by 50 ul 50%
acetonitrile (ACN)/0.1% FA, and equilibrated with 75 ul 0.1% FA
twice. The digest was loaded by spinning at 3500 X g until the entire
digest passed through. If needed, the bound peptides were washed
twice with 75 ul 0.1% FA. One ul of TMT reagent (~19 ug when
resuspended according to manufacturer’s instructions) in 100% ACN
was added to 100 ul freshly made HEPES, pH 8, and passed over the
C18resin at 350 X g until the entire solution has passed through. The
HEPES and residual TMT was washed away with two applications of
75 ul 0.1% FA and peptides were eluted with 50 ul 50% ACN/0.1%
FA followed by a second elution with 50% ACN/20 mm ammonium
formate (NH,HCO,), pH 10. Peptide concentrations were estimated
using an absorbance reading at 280 nm and checking of label efficiency
was performed on 1/20th of the elution. We strongly recommend using
freshly prepared HEPES and TMT reagents when possible. Older re-
agents can cause singly charged contaminants which become a pre-
dominant signal when low amounts of peptides (= 1 ug) are loaded
onto the LC-MS. These contaminants can be partially avoided via bSDB
fractionation, where the contaminants mainly elute above an ACN per-
centage of ~33%. After using 1/20th of the elution to test for labeling
efficiency, the samples are mixed before fractionation and analysis.

Stage tip bSDB Fractionation—200 nl pipette tips were packed
with two punches of sulfonated divinylbenzene (SDB-RPS, Empore)
with a 16 gauge needle. The Stage tip was conditioned and equili-
brated as described above. After loading ~20 ug peptides, a pH
switch was performed using 25 ul 20 mm NH,HCO,, pH 10, and was
considered part of fraction one. Then, step fractionation was per-
formed according to the amount of peptide material and assuming
equal mass distribution. For example, 20 g of peptides were frac-
tionated into nine fractions of 20 mm NH,HCO,, pH 10, with ACN
concentrations of 5, 10, 15, 20, 25, 30, 35, 40, and 90%. Each fraction
was transferred to autosampler vials and dried via vacuum centrifu-
gation and stored at —80 °C until needed. As a rule of thumb, we
determine the number of Stage tip fractions by the amount of total
TMT labeled peptides going into the fractionation, (total peptide in-
put/2) - 1. For example, if one has 2 pg/sample and ten TMT labeled
samples, assuming equal mass distribution, we would have nine final
fractions. Injecting half of each fractions leads to ~1 ug on-column
for LC-MS data acquisition.

For comparison, bC18 and SCX (both Empore) tips were made and
fractionated in the same way as bSDB. SCX resin was conditioned
with MeOH, followed by 50% ACN, 0.1% FA, 0.1% FA, and NH,OH,
pH 11, 25% ACN, and was equilibrated with 0.1% FA. Prior to SCX
fractionation, digests were desalted via Stage tip and were loaded
onto the SCX resin in the C18 elution buffer, 50% ACN, 0.1% FA. SCX
step fractionation was performed using 50 mm NH,C,H;0,, 25%
ACN, pH 4.5, followed by 50 mm NH,C,H;0,, 25% ACN, pH 5.5, 50
mm NH,C,H30,, 25% ACN, pH 6.5, NH,OH, 25% ACN, pH 8.0, 50
mm NH,HCO,, 50 mm 25% ACN, pH 9.0, and NH,OH, 25% ACN, pH
11.0. Each SCX fraction was then desalted via C18 Stage tip, dried via
vacuum centrifugation and stored at —80 °C. For gradient extension
experiments, only the separation gradient was extended by the stated
amounts. A 1X gradient represents a 110-min method with an 84-min
separation gradient. For these experiments, we kept the final fractions
to six, rather than the nine as suggested above. This was to keep the

gradient length extension consistent and, thus, comparisons more
interpretable. All individual fractions were analyzed using the 1x gra-
dient described above.

Protein Input Determination—We decided that sacrificing enough
sample for each cell type analyzed to determine protein levels was
undesirable. Instead, we prepared separate sorts for representative
cell types for the sole purpose of protein input determination. GN, B,
MF and CD4™ T cells were sorted into collection microreactors, lysed
and digested as described above. The desalted peptides were meas-
ured using absorbance at 280 nm on a Nanodrop spectrophotometer.
The 1 pg/wl Jurkat digest we use for instrument QC was serially
diluted in half for a five-point standard curve. These protein yields
were then assumed for all remaining cell collections.

Experimental Design and Statistical Rationale-Common Refer-
ence—A “common reference” sample used as an internal standard
for each LC-MS run was prepared by mixing 200,000 cells each from
the B.1a peritoneal cavity (PC), MF.PC, B.Sp, T4.spleen (Sp), T8.Sp,
DC.Sp, GN.Sp, Treg.Sp, y&6T.Sp, NK.Sp, and NKT.Sp popula-
tions, 100,000 total CD45- mesenteric lymph node cells, 100,000 total
CD45™" and total CD45~ splenocytes three hours after subcutaneous
injection of 10,000 U IFNe, 200,000 total CD45" bone marrow cells,
200,000 total CD45™ gut cells, 200,000 total CD45™ peritoneal cavity
cells, and 500,000 total CD45" splenocytes. Sample layout for all
other TMT channels can be found in supplemental Table S7.

Data Acquisition—Chromatography was performed using a
Proxeon UHPLC at a flow rate of 200 nl/min. Peptides were separated
at 50 °C using a 75 um i.d. PicoFrit (New Objective, Woburn, MA)
column packed with 1.9 um AQ-C18 material (Dr. Maisch, Germany)
to 50 cm in length over a 235 min run. The on-line LC gradient went
from 6% B at 1 min to 30% B in 204 mins, followed by an increase to
60% B by minute 214, then to 90% by min 215, and finally to 50% B
until the end of the run. Mass spectrometry was performed on a Thermo
Scientific Q Exactive Plus mass spectrometer. After a precursor scan
from 300 to 2000 m/z at 70,000 resolution, the top 12 most intense
multiply charged precursors were selected for higher energy collisional
dissociation (HCD) at a resolution of 35,000. Precursor isolation width
was set to 1.7 m/z and the maximum MS2 injection time was 100 msecs
for an automatic gain control of 5e4. Dynamic exclusion was set to 20 s
and only charge states two to six were selected for MS2. Half of each
fraction was injected for each data acquisition run.

Data Processing— Data were searched all together with Spectrum
Mill (Agilent) using the Uniprot Mouse database (17 Oct. 2014, 41,309
entries), containing common laboratory contaminants. A fixed modi-
fication of carbamidomethylation of cysteine and variable modifica-
tions of N-terminal protein acetylation, oxidation of methionine, and
TMT-10plex labels were searched. The enzyme specificity was set to
trypsin and a maximum of three missed cleavages was used for
searching. The maximum precursor-ion charge state was set to six.
The MS1 and MS2 mass tolerance were set to 20 ppm. All TMT
reporter ions were ratioed to the common reference channel of 131.
Peptide and protein FDRs were calculated to be less than 1% using
a reverse, decoy database.

Proteins were only reported if they were identified with at least two
distinct peptides and a Spectrum Mill score protein level score = 20.
In all supplemental tables, the identifier column includes the Uniprot
accession number_Gene symbol_Protein name_#unique peptides.
Protein inference was performed in two different ways. For reporting
number of proteins detected, protein subgroups were expanded if a
subgroup specific peptide was identified. This reflects the number of
various proteoforms that can be created from a single gene. For
downstream analyses protein subgroups were collapsed to the pro-
teoform with the most or best evidence so that all proteins were only
represented by their gene name a single time. Peptides common
between subgroups were used for quantitation.
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TMT10 reporter ion intensities in each MS/MS spectrum were
corrected for isotopic impurities by the Spectrum Mill protein/peptide
summary module using the afRICA correction method which imple-
ments determinant calculations according to Cramer’s Rule (50) and
general correction factors obtained from the reagent manufacturer’s
certificate of analysis (https://www.thermofisher.com/order/catalogue/
product/90406)

Fractional intensities (frINT) were calculated as the sum of precur-
sor ion chromatographic peak areas in MS1 spectra for all PSMs
contributing to the protein. A similar approach has been previously
reported (36). frINT for each protein was calculated by splitting the
combined precursor ion abundance in proportion to its individual
normalized protein-level reporter ion ratio. For example, the amount
of “fractional intensity” of protein A from one TMT channel (e.g. 126)
can be calculated as the summed MS1 intensity for all peptides from
protein A multiplied by the fraction that the 126 channel contributed to
the summed MS1 intensity. Formally, frINT of 126 is written as:

/1 26
frINTprotA = /proIA,MSW (27//)

where frINT,, 4 is the fractional intensity of protein A, I, ia ms1, 1S
the summed MS1 intensity of all peptides attributed to protein A,
i106 is the intensity of the 126 reporter ion for all protein A peptides,
and 3i,, is the summed intensity of all reporter ions used in the
experiment.

The peak area for the extracted ion chromatogram (XIC) of each
precursor ion subjected to MS/MS was calculated automatically by
the Spectrum Mill software in the intervening high-resolution MS1
scans of the LC-MS/MS runs using narrow windows around each
individual member of the isotope cluster. Peak widths in both the time
and m/z domains were dynamically determined based on MS scan
resolution, precursor charge and m/z, subject to quality metrics on
the relative distribution of the peaks in the isotope cluster versus
theoretical. Although the determined protein abundances are gener-
ally reliable, several experimental factors contribute to variability in
the determined abundance for a protein. These factors include in-
complete digestion of the protein; widely varying response of individ-
ual peptides because of inherent variability in ionization efficiency as
well as interference/suppression by other components eluting at the
same time as the peptide of interest, and sampling of the chromato-
graphic peak between MS/MS scans. The number of observable
tryptic peptides/protein can be used to correct summed peptide
abundances for protein length. The frINT values used for all analyses
were calculated by dividing each protein’s frINT value by the median
histone intensity (HIST2H2BB, H2AFX, HIST1H4A, HIST1H3A, and
HIST1H1C) for that sample/TMT channel, the sum of the TIC for all
fractions for a 10-plex, as well as the number of observable tryptic
peptides for a given protein. This was then multiplied by 1e6 to give
ppm Histone. These values provide rough estimates for abundance
differences between proteins. The ratiometric data should be used for
comparing a protein’s abundance level across cell types.

To generate samples for testing frINT, we cultured E14 mouse
embryonic stem cells in serum containing medium. For differentiation,
LIF was removed for 48 h, followed by 500 um retinoic acid (Sigma) for
48 h more. Cells were lysed and digested as described above. After
desalting, the sample was split and 5 ug was desalted for LFQ
analysis, or 5 ug was on-column TMT labeled, mixed and analyzed as
described above. Roughly 1 ug was analyzed for both sample for-
mats. Label free data was acquired as described above with the
exception that the MS2 resolution was set to 17,500 and the normal-
ized collision energy was 27. Data were searched on MaxQuant
version 1.3.0.5. against the Uniprot Mouse Canonical database,
2014Apr03 (43,427 entries) with a precursor and product ion toler-
ance of 20 ppm. Trypsin/P was set for digestion conditions allowing

up to two missed cleavages. Variable peptide modifications allowed
for Met oxidation and protein N-term acetylation, Cys carbamidom-
ethylation was considered a constant modification. Match between
runs within a 2 min RT window was enabled and both the peptide and
protein FDR was set to < 0.01.

Data Analysis—

Data Imputation— After replicate recall correlation analysis, log, FC
values were normalized by two component Gaussian mixture model-
based normalization (32)). Missing values between 10-plex cassettes
were imputed if the protein was detected in at least half of all samples
using k-nearest neighbor (k-NN) imputation (51). Imputed data sets
were only used for the moderated F-test and marker selection anal-
ysis (described below). This is noteworthy as exclusively expressed
proteins may only be detected in a single cell type and would have
been ignored for downstream analysis.

Top 20 Differentially Expressed Genes from Microarray—The top 20
differentially expressed genes were calculated by taking the 20 larg-
est fold change values from one cell type compared with all the others
(supplemental Table S2). For protein fold change mapping, duplicate
gene names and genes not detected in this study were removed.

Differential Abundance Analysis—The normalized and imputed
data set was subjected to a moderated F-test (Smyth, 2004), followed
by Benjamini-Hochberg Procedure correcting for multiple hypothesis
testing. We drew an arbitrary cutoff at adj. P val < 0.01. The heatmap
shows the log, fold change to the common reference and was clus-
tered using one minus Pearson correlation metric (https://software.
broadinstitute.org/morpheusy/).

Hierarchical Clustering and Marker Selection— Hierarchical cluster-
ing and marker selection analysis was performed in Morpheus
(https://software.broadinstitute.org/morpheus/). Clustering was per-
formed on rows and/or columns indicated by the dendrogram for
individual analyses, using one minus Pearson correlation as the met-
ric. For Marker Selection analysis, the signal to noise metric using a
one cell type versus all approach was performed. The number of
permutations was set to 10,000 and only proteins with an FDR of less
than 0.15 were kept, except for mast cells (MC), where there FDR
cutoff to be included in the heatmap was 0.05 for size considerations.

Principal Component Analysis—Principal component analysis
(PCA) was performed on an arbitrary cutoff of the 666 proteins (top
13%) with the highest F-statistics (highest FC, high precision). 15%
is the cutoff typically used in Immgen related studies (10-13, 33,
44). To analyze gene sets contributing to the resultant projections,
the loadings from PC1 and PC2 were analyzed using Gene Set
Enrichment Analysis (GSEA v2.2.3, broadinstitute.org/gsea) with
the c2.cp.v5.2.symbols.gmt[Curated] gene matrix. Enriched gene
sets (adj. P val < 0.05) are displayed with their respective normal-
ized enrichment score (NES).

Analysis of RNA/Protein Relationships—5125 gene products (col-
lapsed to gene name) were identified in both the transcriptomics and
proteomics and were used for all subsequent RNA/protein analyses.
To calculate the cell type specific RNA/protein correlations, we per-
formed Spearman’s rank correlation on the ppm histone and microar-
ray values (12, 33).

For analysis of co-regulation, the Euclidean distance between all
pairwise mRNA or protein (log, FC values) measurements was calcu-
lated and hierarchically clustered. To visualize the discrepancies seen
between mRNA co-regulation at the protein level, the protein p’s were
mapped in order of the mRNA clustering.

Expression ranks were calculated by ranking expression level of
each gene product for each cell type using either the microarray data
or the frINT values. The most abundant gene product was given a
value of 1, the lowest, 5,125. Delta-rank scores were calculated by
subtracting the protein rank from the RNA rank. Thus, large negative
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until lysis. Lysis, reduction, alkylation, and digestion all happen in the microreactor. Digestions are then loaded onto a C18 Stagetip for
desalting and on-column TMT labeling. After labeling, samples are mixed and subjected to small-scale sulfonated polystyrenedivinylbenzene
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a high mass accuracy/resolution mass spectrometer.

values suggest relatively high protein levels and low RNA levels. Large
positive numbers, high RNA, low protein. We calculated the delta-
rank score for every gene product for every cell.

RESULTS

Development of Low Input Proteomic Sample Preparation
Methods—To adapt proteomics sample preparation proto-
cols for low cell numbers directly from flow cytometry we
focused on four main steps: efficient capturing of FAC-sorted
cells, minimizing sample handling, improving sample multi-
plexing, and optimizing fractionation for low amounts of TMT-
labeled peptides (< 10 pg) (Fig. 1). We concentrated on
primary immune cells from mice as they are well-character-
ized at the transcriptome and single protein level with anti-
bodies but are poorly studied at the proteome level because
of their relatively poor availability from a small animal.

Because FAC-sorting and washing cells in microfuge tubes
can lead to significant cell loss (24), we developed a simple-
to-make collection microreactor that enables efficient capture
and washing of FAC-sorted cells, as well as lysis and diges-
tion of low cell numbers (Fig. 2A). We fabricated collection
microreactors for facile collection and washing of FAC-sorted
cells. After the final column-format washing of cells, i.e. not in
batch format, cells are lysed, and proteins digested. The
digest can then be directly transferred to a C18 Stage tip for
sample desalting (25) (Fig. 2B). To compare the collection
microreactors to standard centrifuge tubes we sorted 2e5
primary B cells directly into tubes or tips and compared the
number peptides identified with either method. Collection
microreactor tips outperformed tubes in distinct peptides
identified in single shot, label free LC-MS/MS mode, as well

as having greater total ion current (TIC), indicating greater
overall peptide intensity (Fig. 2C-2D). Given the improve-
ments in peptide IDs, together with the ease of washing and
avoiding disruption of a non-visible cell pellet, we incorpo-
rated the collection microreactors into the low input proteom-
ics workflow.

Isobaric labeling of peptides enables multiplexed peptide/
protein identification and MS2 level quantitation for up to
eleven samples using tandem mass tags (TMT) (26, 27). Mul-
tiplexing low input samples provides a boost in MS1 signal
intensity by combining signal from multiple experiments, im-
proving overall sensitivity of data acquisition (28). In-solution
TMT labeling requires an additional desalting step post-
quenching, which often results in sample loss. To circumvent
these sample handling steps we tested whether we could
directly couple desalting and TMT labeling of small peptide
amounts when adsorbed to the C18 resin (23, 29, 30). Two
micrograms of whole cell lysate digest was labeled either
in-solution in a microfuge tube or pre-adsorbed to C18 resin.
On-column TMT labeling yielded a higher percentage of fully-
labeled peptides (all possible primary amines coupled to TMT)
and was more reproducible than the standard protocol (Fig.
3A). The on-column labeling method also yielded a 27%
increase in peptide spectral matches (PSMs) compared with
in-solution labeling (Fig. 3B). Finally, on-column TMT labeling
avoided an extra desalting step and reduced the entire label-
ing protocol from about three hours to less than 10 mins (Fig.
3C). These results demonstrate that the on-column TMT la-
beling strategy is faster and more efficient for labeling low
microgram levels of peptides.
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Fic. 2. Collection microreactors A, Collection microreactor design and usage. B, Transfer of digest to Stage tip is accomplished by
inserting the microreactor into a pre-equilibrated Stage tip. C, Comparison of number of mouse peptides identified using either standard
microfuge tubes or the collection microreactors from 2e5 B cells. Two collection replicates are shown. D, Total ion current (TIC) is a proxy for
the amount of material loaded on-column, from either standard microfuge tubes or the collection microreactors from 2e5 B cells.
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Fic. 3. On-column TMT labeling A, Labeling efficiency of on-column TMT labeling compared with in-solution labeling for low peptide
amounts. Mean and standard deviation is shown, Student’s t test p value. B, Mean and standard deviation of number of PSMs for
in-solution or on-column TMT labeling, n = 6 Student’s t test p value. C, Steps and timing for desalting coupled with on-column TMT labeling.

To reduce sample complexity of the full proteome digest for
deep proteome profiling, we explored Stage tip fractionation
strategies for TMT-labeled peptide mixtures (25, 31). Com-
paring strong cation exchange (SCX), C18 at pH 10 (bC18), or
sulfonated polystyrenedivinylbenzene at pH 10 (bSDB) we
found that fractionation improved the number of identified
TMT-labeled peptides compared with gradient extension
alone (Fig. 4A). Both basic reversed phase formats consis-
tently identified more peptides than SCX fractionation (Fig. 4A).
bSDB fractionation outperformed bC18 fractionation in number
of PSMs, had higher precursor intensities for analytes identified
in later fractions, and greater fraction uniqueness (Fig. 4A-4C).
Comparison of retention times (RT) of peptides identified in their
respective bC18 or bSDB step fractions compared with their
on-line, acidic RT in LC-MS/MS of an unfractionated sample
showed a more even distribution of peptides across fractions
with bSDB (Fig. 4D). These data show bSDB is an orthogonal,
well-suited method for fractionating of small amounts of TMT-
labeled peptides.

Deep, Quantitative Proteomic Profiling of 3e5 FAC-sorted
Immune Cells—Having developed a streamlined sample prep-
aration protocol, we performed quantitative proteome profil-
ing on FAC-sorted primary murine immune cells. 12 cell types
were chosen spanning a range of abundance levels in the
mouse (Fig. 5A). To mitigate large numbers of mice and long
FACS times, we chose to collect 300,000 cells from each cell
type in duplicate or triplicate. 3e5 cells yielded a range of
protein amounts after urea lysis and digestion from about 4
pg for neutrophils (GN) and B cells to approximately 2 ug for
T cell subtypes. To have a common reference connecting the
separate TMT 10-plexes to enable cross-plex analyses, we
created a sample comprised of a mixture of immune cell types
(supplemental Table S1) prepared at the beginning of the
study (32). This common reference sample was labeled with
the TMT-131 reagent and was included in all TMT 10-plex
experiments (Fig. 5A).

We performed the low input proteomics protocol described
above on four TMT 10-plex experiments of ~2 ug peptides
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Fic. 4. Characterization of small-scale peptide fractionation. A, Comparison of the number of PSMs from extended on-line LC-MS/MS
gradients, and different small-scale fractionation modalities to a single shot analysis. Assuming equal mass distribution, ~1 png was loaded
on-column. B, Total ion current (TIC) for identified peptides across fractions for two different hydrophobicity-based fractionation modalities. C,
Fraction uniqueness between basic reversed phase on C18 packing material (0C18) and sulfonated polystyrenedivinylbenzene at pH 10 (bSDB)
fractionation. Bar graph shows the number of peptides identified in a single fraction (1frac), in two fractions (2frac) and so on. D, Orthogonality
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intensity of each peptide (red color scale) is plotted on the x axis according to their on-line, normalized RT (nRT) and are compared with the
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per sample. On average 6427 protein groups (including
all proteoforms) were identified in each 10-plex by two or
more peptides per protein (peptide and protein FDR < 1%);
7023 protein groups were identified across all samples (Fig.
5B and supplemental Fig. S1A). After performing correlation
analysis across biological replicates (defined here as starting
from different mice) of the log, transformed protein ratios of
the individual samples to the common reference, we excluded
any cell type replicates with a Pearson r < 0.5, except for Bla
cells as only duplicates were provided (supplemental Fig.
S1B). The median and mean Pearson r across the included
biological replicates were 0.90 and 0.87, respectively (Fig.
5C). A recent study from our laboratory showed the median
and mean Pearson’s r between preparation replicates for high
inputs were both 0.9, (32) indicating our low input data is of
high quality, comparable to standard sample preparation
methods.

To test if protein measurements recapitulated known ex-
pression patterns of immune cell types, we mapped the pro-
tein fold change values for the top 20 differentially expressed
mRNAs for each cell type ((33) and Immgen.org) (supplemen-
tal Table S2). We found that most canonical markers of spe-
cific cell types had expected and exclusive abundances (e.g.
CD8a/b in CD8™" T cells) or near exclusive abundances (e.g.
CD19 in B and B1a cells, and CD4 in CD4™" T cells and Treg
cells) (Fig. 5D).

Identification of Differentially Abundant and Immune Cell
Type-Specific Proteins—To identify differentially abundant
(DA) proteins between different cell types, we performed a
moderated F-test across all biological replicates. 4241 protein
groups were found to be DA in at least one cell type with a
false discovery rate (FDR) < 0.01 (Fig. 6A and supplemental
Table S3). Principal component analysis (PCA) followed by
gene set enrichment analysis (GSEA) was performed to visu-
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alize how the cell types clustered and which pathways drove
their separation (Fig. 6B). When the top 13% (666 proteins,
arbitrary cutoff) DA proteins were projected into PCA space
there was high overlap between biological replicates, and cell
types known to be similar (e.g. lymphocytes versus myeloid, T
cells versus B cells, etc.) clustered together. GSEA of the
loadings for PC1 and PC2 revealed eleven and eight path-
ways, respectively (adjusted p value <0.05), driving the sep-
aration. The gene sets separating the cell types along the PC1
axis showed enrichment for T cell receptor (TCR) and B cell-
related pathways in the positive direction, whereas pathways
associated with extracellular matrix remodeling were enriched
in the negative direction. For PC2, gene sets involved in B cell
receptor (BCR) signaling and the innate immune system were
enriched in the positive direction, whereas TCR signaling was
enriched in the negative direction. These data show that im-
munologically relevant pathways drive the differences be-
tween cell types at the protein level, demonstrating the fidelity
of low input proteomics.

To identify proteins that may better distinguish closely re-
lated cell types, we employed data imputation (supplemental
Table S4) followed by marker selection analysis, comparing
one cell type to all others in an iterative fashion (34). Marker
selection analysis displayed high cell-type specificity for DA
proteins, with y8T cells showing the fewest markers, MCs the
highest (Fig. 6C and supplemental Table S5). This analysis
identified distinct plasma membrane-annotated proteins (Uni-
prot.org) between molecularly similar cell types that could
provide alternative or additional markers (supplemental Fig.
S2 and supplemental Table S6). For example, GHDC, LM-
BRD1, and region 102 of Ig heavy chain V distinguish B cells
from B1a cells (both CD19%); or CD5, CNNM4, LANCL2, and
SELH for CD4" T cells from Tregs (both CD47) (Fig. 6D).
These data demonstrate that low input proteomics recapitu-
lates many known aspects of immunology and may provide
valuable new insights for future immunological studies.

Protein/RNA Relationships Reveal Evidence for Post-tran-
scriptional Regulation Across the Immune System—We per-
formed FACS for this study based on Immgen’s protocols and
gating strategies (33) (www.immgen.org) to allow comparison
of our proteomic data to previously acquired transcriptomic
data (10-13, 33). Using collapsed protein groups (proteo-
forms from genes with the strongest evidence at the peptide
level), we had overlapping measurements for 5,125 gene

products. To test the appropriateness of investigating protein/
RNA relationships, we calculated the Spearman’s rank corre-
lation coefficient (p) for all gene products for each individual
cell type. We found all cell types had a correlation coefficient
in agreement with previous reports for unperturbed cells,
0.25 < p < 0.50 (Fig. 7A) (1, 3-5).

To find evidence of post-transcriptional regulation across
the immune system, we asked whether we could see global
trends in altered protein/RNA levels by looking for co-regula-
tion changes between mRNA and protein (35). We calculated
p for each pairwise mRNA measurement across all the cell
types profiled (13). Clustering of the p values for RNA expres-
sion showed blocks of positive correlations, strongly suggest-
ing these transcripts are co-expressed across immune cell
types (Fig. 7B). Performing the same analysis in log, FC
protein space, we again could see blocks of positive correla-
tions, though the overall data structure between the RNA and
protein was markedly different (Fig. 7C). To visualize and
better contrast the differences between mRNA and protein
co-regulation, we reorganized the matrix of protein p’s using
the ordering derived from hierarchical clustering of the mRNA
p matrix. This mRNA-ordered, protein co-regulation matrix
showed a gross loss of off-diagonal blocks of positive corre-
lations (Fig. 7D), implying protein co-expression is governed
by distinct processes from those underlying mRNA co-ex-
pression in primary immune cells.

To further investigate protein/RNA relationships, we next
asked which pathways show evidence for post-transcriptional
regulation across the immune cells analyzed. We calculated
the Pearson correlation coefficient (r) for each gene product
individually across all cell types using mean mRNA levels and
mean relative protein abundances. GSEA of the genes’ r
values identified nine gene sets with a p value of < 0.01 (Fig.
7E). Five of the gene sets were enriched for positive protein/
RNA correlation, whereas four were enriched for negative
protein/RNA correlation. Among the positively-correlated
gene sets, we found gene products within the cell cycle gene
set among the positively correlated protein/RNA levels, con-
sistent with previous studies (3, 32). We also found a BCR
signaling pathway gene set to have positively correlated pro-
tein/RNA patterns across the 12 immune cell subtypes (Fig.
7E). On the other hand, the negatively-correlated gene sets
included Toll-like receptor (TLR) and MAPK signaling path-

Fig. 5. Low input proteomics of 12 primary murine immune cell types. A, Twelve immune cell types were doubly FAC-sorted according to
Immgen protocols. B1a, a.k.a. B-1; B, a.k.a. B-2; DC, dendritic cell; MC, mast cell; NK, natural killer cell; GN, neutrophils; MF, macrophage;
NKT, natural killer cell; T8, CD8™ T cells; T4, CD4™ T cells; Treg, regulatory T cells; y8T, gamma delta T cells. The common reference was
created as a mixture of immune cell types listed in supplemental Table S1. All replicates are shown in supplemental Fig. S1. B, Number of
protein groups identified for each cell type used in the final analyses. The cumulative number of protein groups identified across all TMT
10-plexes is shown in black. C, Pairwise Pearson correlation analysis of all samples included in downstream analyses in log, protein FC space.
The mean and median Pearson r for biological replicates, plotted along the diagonal, are 0.87 and 0.90, respectively. All replicates are shown
in supplemental Fig. S1. D, Heatmap of global log, protein FC values for the 20 most differentially expressed mRNAs (see methods) for the
cell types profiled in this study. Duplicate genes were collapsed and gene products not detected at the protein level were excluded. Gene

names are displayed on the right for reference.
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ways, suggesting that post transcriptional regulation may p
a role in the innate immunity response.
To gain insight into the directionality of the negatively c

related TLR pathways, i.e. high protein levels/low RNA levels
or vice versa, we rank-ordered the abundance level of each
gene product within each cell type and calculated the differ-

ence in rank (delta-rank) between RNA and protein. First,

lay

” for not

estimate relative inter-protein levels we took the summed

precursor intensities for peptides belonging to each individual

or-

to

protein and scaled the individual TMT channel contributions
to find how each sample contributed to the overall protein
level (36) (supplemental Fig.
(frINT) measurements showed high agreement with Max-
Quant’s MaxLFQ, a widely-used label free MS1-based quan-

S3A). These “fractional intensity”
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titation software package for proteomic data analysis (37)
(supplemental Fig. S3B). After applying frINT to our immune
cell dataset we rank ordered the protein and RNA levels for
each individual cell type, where 1 was the most abundant
gene product, 5125 the least abundant, for the delta-rank
analysis. Clustering analysis of the delta-rank values for all
gene products detected in the three TLR-related gene sets
with negative RNA:protein correlations about one-third
showed little to no change in the delta-rank changes ( delta >
2000, e.g. the change in rank was not at least 2000 in either
direction) (Fig. 7F). We were also able to identify subclusters
of gene products that suggest low RNA/high protein levels
(large, positive values, pink) or low protein/high RNA levels
(large, negative values, blue). Some gene products also
showed cell type specific delta-ranks, suggesting different
immune cell types regulate specific gene products to estab-
lish their respective proteomes.

DISCUSSION

Proteome profiling offers new levels of information about
cellular identity and regulation that can be missed with
genomics or transcriptomics alone. The generation of ge-
nome-wide protein measurements, however, is often limited
by the amount of input needed for deep and high-quality
proteomic profiling. Here, we show improved sample prepa-
ration strategies for MS-based proteomic analysis of low cel-
lular inputs from FAC-sorted cells. Using these low input
proteomics methods, we were able to quantify over 7000
protein groups analyzing half of the 300,000 freshly isolated
mouse immune cell-type collected directly from FACS.

The sensitivity of our low input methodology derives from a
combination of three main improvements: fabrication of col-
lection microreactors for easy cell collection and digestion;
on-column TMT labeling coupled with desalting for faster and
more efficient peptide labeling; and optimized small-scale
fractionation of TMT-labeled peptides. The microreactors pro-
vided a versatile cell capture system with several benefits over
microfuge tube or in-StageTip (25, 31) collection including the
ability to wash cells in a column-like format without the need
to see a hardly visible pellet, smaller lysis and digestion vol-
umes, and a filter which can prevent StageTip clogging. On-
column labeling of peptides with TMT reduces the time and
number of sample handling steps needed for conventional
in-solution labeling because the desalting and labeling occur
on the same resin. On-column labeling also was more efficient
specifically for fully TMT-labeled spectra for low microgram
inputs compared with in solution, even without a desalting

step prior to on-column labeling (23). Although solid-phase
peptide labeling has been previously reported in acidic con-
ditions (30), the on-column protocol reported here takes less
time and has been optimized for 1000-fold less material.
Finally, optimizing small-scale fractionation for TMT-labeled
peptides allowed improved depth of coverage for low input
proteomics. Previous work has shown that for medium levels
inputs (between 5 and 50 ug peptide per state) of unlabeled
peptides, SCX outperformed basic reversed-phase (bRP)
chemistries in number of peptide identifications (25, 31). Our
work here shows that both bRP modalities tested outper-
formed SCX, likely because of fact that TMT labeling converts
primary amines into amides, dampening the positively
charged character of tryptic peptides. Together, the reduced
sample handling steps, combined with efficient TMT labeling
and off-line, tip-based fractionation, enabled the deep, quan-
titative proteomic profiling of 300,000 murine primary immune
cells isolated directly from FAC-sorting.

We applied our low input proteomic-sample preparation to
12 freshly isolated murine immune cell types sorted according
to Immgen protocols. To our knowledge, this study provides
the first proteome-wide characterization of the major immune
cell types from their resident tissues rather than peripheral
blood. Over 7000 proteins were quantified with high repro-
ducibility as seen by the high replicate recall between mouse
replicates. The median Pearson correlation between mouse
replicates acquired using low input proteomics protocols
matched that of the high input, preparation replicates used
routinely by our laboratory for longitudinal quality assess-
ments (Fig. 5C) (32).

Differential analysis of protein abundances found nearly
two-thirds of proteins were DA in at least one cell type. This
high proportion was expected as even pairwise compari-
sons of vastly different cell types at the RNA level reveal
large differences genome-wide (13). When projected into
PCA space, we found that the relevant cell types clustered
together, and that the clustering was driven by expected
pathways, such as BCR and IL12 pathways for B cells, and
TCR signaling for T cells (Fig. 6B). This analysis also found
that MF, GN, and to a lesser extent MCs, had low related-
ness through PC1 to the other cell types, and that proteins
associated with extracellular matrix remodeling were the
main drivers of this separation (38, 39). As MF, GN, and MC
are often associated with solid tissues, we hypothesize
these cell types have mechanisms to move through the
extracellular matrix.

E, GSEA of gene product correlation coefficients across immune cells for all overlapping protein/RNA measurements (p value < 0.01).
Normalized enrichment scores (NES) are plotted, along with the number of gene products identified in each gene set (green bar graph). *
denotes that the gene products from these gene sets were combined and used for analysis in Fig. 7F. F, Clustering analysis of delta-rank gene
product levels in the TLR gene sets from Fig. 7E for individual cell types. Gene products within a cell type with relatively low RNA levels and
high protein levels will have a large, positive number (pink). Blue suggests relatively low protein levels and high RNA levels. Clustering was

performed using the Euclidian distance metric.
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Using marker selection analysis, we found that MCs were
the most distinct cell type proteome-wise from the other
immune cell types profiled, a finding consistent with mRNA
expression profiling (11). Differentiating cell types based on
DA proteins showed better discrimination between closely
related cell types than protein levels chosen by their differen-
tial mMRNA expression. For example, most protein products
determined by their differential mRNA levels in B and Bla
cells showed little difference between the two cell types (Fig.
5D). A similar situation was seen between T4 and T8 cells, and
especially for PTPRC (CD45), which was present in high
amounts across NK cells and all T cell subtypes. From the
marker selection analysis, we were able to nominate several
plasma membrane annotated proteins that could provide ad-
ditional or alternative markers to distinguish B cells from B1a
cells, or T4 from Tregs (Fig. 6D). Consistent with these results,
CD5 and LANCL2 have established roles in Treg activity
(40-43).

We adhered strictly to Immgen sorting protocols to enable
the comparison of transcriptomic data to our proteomic data
to gain insight into potential regulatory points of gene product
expression (10-13, 44). Cell type specific protein/RNA corre-
lations showed a relationship expected for steady state cells
(1, 3-5). To establish evidence for post-transcriptional regu-
lation genome-wide, we looked for changes in co-regulation
at the protein or RNA levels. Recent work by Kustatscher and
colleagues has shown that transcriptional co-regulation is
largely driven by proximity to other actively transcribed genes
on their respective chromosome (35). The phenomenon of
proximal genes being co-regulated is commonly observed in
topologically associated domains and gene expression neigh-
borhoods molecularly characterized by 3D-interaction map-
ping of genomic DNA (45, 46). This co-regulation at the tran-
scription level, however, was dampened at the proteome level
(35), likely because of translational control, and to a lesser
extent protein stability, to maintain levels of functionally re-
lated or physically interacting proteins (4, 47, 48). We looked
for mRNA and protein co-regulation by calculating and clus-
tering the p’s for the 5125 gene products with overlapping
measurements. Both mRNA and protein data showed respec-
tive and distinct co-clustering blocks, suggestive of co-regu-
lation across the immune cell types profiled in this study (Fig.
7B-7C). Rearranging the protein p’s in the order determined
by hierarchical clustering of the mRNA data revealed a distinct
loss in data structure and off-diagonal correlations (Fig. 7D)
suggesting primary mouse immune cells show a degree of
buffering transcriptional co-regulation to the desired protein
landscape.

The low input proteomics described here extend the appli-
cability of previous methodologies to FAC-sorted immune
cells and highlight the value of reduced-handling sample
preparation, especially those requiring analysis of limiting
amounts of sample (22, 23, 36). Other applications of the
methods we describe include profiling of other cell types,

co-immunoprecipitation studies, and post-enrichment label-
ing. We envision these methods will enable researchers to
perform proteomic experiments of scarce samples previously
out of reach.
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