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Mass spectrometry with data-independent acquisition (DIA) 
is a promising method to improve the comprehensiveness 
and reproducibility of targeted and discovery proteomics, in 
theory by systematically measuring all peptide precursors 
in a biological sample. However, the analytical challenges 
involved in discriminating between peptides with similar 
sequences in convoluted spectra have limited its applicability 
in important cases, such as the detection of single-nucleotide 
polymorphisms (SNPs) and alternative site localizations in 
phosphoproteomics data. We report Specter (https://github.
com/rpeckner-broad/Specter), an open-source software 
tool that uses linear algebra to deconvolute DIA mixture 
spectra directly through comparison to a spectral library, thus 
circumventing the problems associated with typical fragment-
correlation-based approaches. We validate the sensitivity of 
Specter and its performance relative to that of other methods, 
and show that Specter is able to successfully analyze cases 
involving highly similar peptides that are typically challenging 
for DIA analysis methods.

Mass spectrometry with data-dependent acquisition (DDA) is the 
method of choice for large-scale discovery proteomics, but this 
technique is fundamentally limited in terms of reproducibility 
and comprehensiveness because of the stochastic nature of its 
data-gathering process1, which inhibits the consistent detection of 
proteins across samples. Targeted strategies such as parallel reac-
tion monitoring and selected reaction monitoring allow repro-
ducible measurement of low-abundance analytes or observation 
of prespecified targets across multiple samples2, but this gain in 
specificity comes at the cost of a vastly limited range of observable 
precursors. DIA is a newer approach that combines the reproduc-
ibility of selected reaction monitoring with the breadth of DDA by 
simultaneously fragmenting all precursors whose mass-to-charge 
ratios (m/z) fall into one of a small number of wide windows 
that traverse the entire m/z range. This results in convoluted MS2 
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spectra whose fragment ion intensities may comprise contribu-
tions from multiple peptide precursors and that are far more com-
plex to analyze than their DDA counterparts.

The challenges posed by DIA demand specialized software tools 
for downstream analysis3–7. Most available tools apply targeted 
methods that require a user-provided spectral library to define 
the search space of peptides (and, in turn, proteins) that can be 
identified and quantified in the acquired data. These tools for 
the most part score library members relative to acquired MS2 
spectra on the basis of characteristics such as normalized dot 
product, fragment ion correlation, and chromatographic peak 
shape. Although these scores typically penalize assignments to 
library spectra whose annotated fragment b- or y-ions are judged 
to exhibit interferences, these methods do not rigorously account 
for the confounding effects of precursor cofragmentation, which 
limit the ability to distinguish precursors with shared spectral 
features. Alternatively, untargeted methods4,5,8 deconvolute the 
data directly without the use of spectral libraries on the basis of 
the grouping of fragment ions with correlated elution profiles. 
This analysis implicitly discards fragments with significant inter-
ferences owing to their poor correlation with a precursor’s elution 
profile. Although this approach is promising for the discovery 
of previously unobserved analytes, the fact that it uses no prior 
information as provided by a spectral library may lead to a high 
false negative rate with complex samples9 and makes it more sus-
ceptible to missing data than targeted methods in attempts to 
quantify analytes across multiple conditions.

Here we describe Specter, an algorithm for the identification 
and quantification of spectral library members in DIA data. It 
recognizes and formalizes the fundamental distinction between 
DIA and DDA, namely, the cofragmentation of potentially large 
numbers of precursors, some of which may share fragment ion 
m/z values. Specter is based on a mathematical formulation of 
the cofragmentation problem, which is then solved by means of 
linear algebra. In contrast to the usual approach involving the  
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detection of correlated chromatographic profiles of selected  
precursor fragment ions, spectral deconvolution takes place 
purely at the MS2 level and involves the entire sequence of m/z 
coordinates and relative intensities of library spectra peaks. This 
allows for the direct calculation of extracted ion chromatograms 
of library precursors, which can then be visualized and analyzed 
via traditional chromatographic approaches10.

This approach is neither spectrum-centric (it does not match 
acquired MS2 spectra to those in a database) nor peptide-centric 
(it does not assess the evidence for individual library members in 
the acquired data), in contrast to other existing methods. Rather, 
it is ‘combination-centric’, in that it identifies and quantifies 
the single combination of library spectra that best explains an 
acquired MS2 spectrum. Specter eliminates the need to reduce 
spectra to curated fragment ions, carries an intrinsically low false 
discovery rate, and is able to distinguish precursors with highly 
similar library spectra, such as those originating from SNPs or 
positional isomers in phosphoproteomics data. The linear alge-
braic framework establishes a meaningful notion of the quantifi-
cation of a precursor in a single DIA MS2 spectrum independently 
from chromatographic information. Specter is able to analyze 
DIA-type data from any instrument and acquisition scheme  
(e.g., SWATH or MSE), and accepts experimental data files in 
centroided mzML format and spectral libraries in Bibliospec’s blib 
format11. Retention-time information in the library is optional, 
and retention-time normalization is not required, though it might 
improve the speed and quality of the results. Specter is built on 
the open-source distributed computing framework Apache Spark 
and is available as an open-source software tool at https://github.
com/rpeckner-broad/Specter.

RESULTS
Specter is based on algebraic deconvolution of mixed spectra
Specter is based on the hypothesis that every MS2 spectrum S 
acquired in the course of a DIA run is a linear combination of 
the spectra of the precursors cofragmented to acquire it, includ-
ing the effects of biochemical noise, instrument error, and 
experimental variability in a peptide’s fragmentation pattern  
(Fig. 1). This is because the total number of ions with a particular 
m/z in S is, in ideal terms, simply the sum of the number of ions 
with that m/z contributed by each of the constituent precursors 
of S. Furthermore, the number of ions with a certain m/z that are 
produced by any one of these cofragmented precursors is entirely 
determined by the precursor’s fragmentation pattern (its pure spec-
trum) and abundance at the time when S is acquired. This allows 
us to associate a sequence of ‘Specter coefficients’ to each spectral 
library precursor that quantifies that precursor’s contributions to 
the acquired DIA MS2 spectra and serves as a calculated total ion 
chromatogram (Supplementary Notes 1– 4). These algebraic coef-
ficients are then analyzed further to determine the final identifica-
tions and quantifications of library members (Online Methods).

The recognition that mixed mass spectra are linear combinations 
of pure spectra is an established principle in gas chromatography–
mass spectrometry12,13 and, more recently, metabolomics14,15. 
However, so-called matrix methods for spectral deconvolution 
have for the most part not taken shape in usable software for gas 
chromatography–mass spectrometry applications13, and to the 
best of our knowledge Specter is the first software tool to apply 
linear deconvolution to mass spectrometry proteomics data.

Specter is as accurate as targeted manual analysis
To compare the quantitative performance of Specter to that of 
a traditional manual analysis, we spiked a mixture containing  
85 synthetic phosphopeptides into a complex HEK293T cell 
lysate at five concentrations ranging from 6.75 ng to 108 ng  
(of total peptide mixture) per injection and then measured each  
spike-in sample in triplicate on a Q-Exactive Orbitrap HF using 
DIA (Online Methods). We applied Specter to each resulting  
data file, using a spectral library consisting of the 85 synthetic 
peptides and 29,248 HEK293T precursors acquired from DDA 
runs of each sample. Independently, we carried out a targeted 
manual analysis of the unprocessed data for the synthetic  
peptides in Skyline.
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Figure 1 | Specter uses linear algebra to formally deconvolute MS2 
spectra derived from cofragmented precursors. (a) Mixed spectra are 
linear combinations of pure spectra. Pure spectra of two hypothetical 
precursors are shown. Their cofragmentation results in the combination 
of their pure spectra to yield a mixed spectrum containing fragment ion 
intensities from both precursors. Fragments with identical m/z in the 
two pure spectra (indicated by dashed lines) lead to peaks in the mixed 
spectrum whose intensities are the result of contributions from both 
precursors. (b) In DDA, precursors are selected in decreasing order of 
abundance and fragmented separately to form MS2 spectra that typically 
represent a single precursor. In DIA, groups of precursors whose m/z fall 
into the same wide window are fragmented simultaneously to form mixed 
MS2 spectra. (c) Specter finds the quantitative combination of library 
spectra that most closely matches the acquired DIA spectrum by linearly 
deconvolving the mixed spectrum into pure components from the library. 
The coefficient of each library spectrum is the total ion intensity of the 
corresponding precursor in the acquired spectrum.
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The elution profiles calculated by Specter agreed extremely 
well with the results of manual annotation in terms of both total 
ion intensities and the retention times at which they were iden-
tified (Fig. 2a and Supplementary Fig. 1). The quantifications 
derived by calculation of the area under the Specter chromato-
gram for each precursor (Online Methods) showed the expected 
linear increase with spike-in concentration (Fig. 2b) and agreed 
with manual quantifications, with a Pearson correlation of 0.96 
between the z-scores of each method for all 85 synthetic peptides 
over all spike-in levels and replicates (Fig. 2c).

The false discovery rate of Specter is intrinsically low
We adopted the target–decoy approach16,17 to assess the false 
discovery rate of Specter. To test its robustness with acquired 
data, we augmented the focused spectral library mentioned 
above with ‘decoys’ from an Escherichia coli spectral library gen-
erated on the same instrument (no E. coli proteins were present 
in the sample). Of the 29,333 HEK293T and synthetic library 
precursors, 8,867 were cumulatively identified by Specter in the 
three replicate DIA runs of the 6.75-ng spike-in sample, whereas 
297 of the 48,131 E. coli precursors were cumulatively identi-
fied, yielding an ‘intrinsic’ false discovery rate of 2% (Fig. 3a 
and Online Methods). This can be further reduced by means 
of linear discriminant analysis18 (Fig. 3b, Online Methods, and 
Supplementary Note 5), at the cost of decreasing the number 
of on-target identifications.

Specter is robust to spectral library incompleteness
Because Specter examines all of the precursors in a spectral library 
simultaneously, it might be susceptible to error when a spectral 
library lacks entries for a substantial number of the precursors 
likely to be present in a sample, as is commonly the case. We 
tested the robustness of Specter in such situations and found that 

its output was largely unaffected when precursors were removed 
individually or en masse from a spectral library (Supplementary 
Figs. 2 and 3).

Specter distinguishes precursors with highly similar spectra
Spectral libraries often contain spectra that share a high number 
of peaks. Nonsynonymous SNPs in coding regions or alternative 
localizations for post-translational modifications (PTMs) can 
result in peptides whose spectra contain a paucity of discriminat-
ing fragment ions. Ambiguous shared features are typically deemed 
‘interferences’ and excluded from consideration in analysis of DIA 
data. Such a strategy runs the risk of limiting biological insight, as 
differential expression of certain SNPs or PTMs may lie at the heart 
of disease phenotypes19. We assessed Specter’s ability to distinguish 
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Figure 2 | Total ion chromatograms calculated by Specter are as accurate as those from manual targeted analysis of DIA data in terms of both 
identification and quantification. Synthetic phosphopeptides were spiked into HEK293T lysate over a range of increasing concentrations, and each 
spike-in sample was analyzed in triplicate in DIA mode. (a) Total ion chromatograms determined by manual quantification in Skyline for the synthetic 
phosphopeptide VLS[+80]PLIIK, as well as those calculated by Specter, for the five peptide spike-in amounts. Each colored line for each concentration 
describes the total ion chromatogram for that precursor in a single replicate run, and chromatograms from each type of analysis are normalized to 
have the same maximum within each replicate. Note the increasing y-axis scales. (b) Mean ± s.e. of quantifications by Specter (area under the Specter 
chromatogram) across replicates for five of the synthetic peptides over the range of spike-in amounts, together with linear fits (dotted lines).  
(c) Comparison of z-scores of quantifications by Specter with those for manual quantification for all 85 synthetic peptides in all replicates and at all 
spike-in levels. The z-scores were calculated in such a way that the mean of the z-scores of each peptide across all spike-in levels and replicates is 0  
and their s.d. is 1.
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Figure 3 | The false discovery rate of Specter is inherently <5%.  
(a) Specter cumulatively identified 30% of true positive HEK293T and 
synthetic library members and 0.6% of false positive E. coli library members 
in three replicates of the 6.75-ng spike-in sample. (b) Distributions of linear 
discriminant scores based on Specter coefficients of identified precursors 
from both libraries mentioned in a.
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between extremely similar library spectra with large numbers of 
shared fragments by comparing Specter results to results obtained 
by use of the normalized dot product, the tool used by most other 
targeted DIA analysis methods to quantify spectral similarity.

We carried out DIA analysis of mixtures of synthetic peptides 
whose sequences differed by only a single amino acid or by the 
transposition of a pair of adjacent amino acids. We analyzed 
three families of synthetic peptides, each consisting of precur-
sors whose spectra were highly similar and whose m/z (in charge 
state +2) fell into the same isolation windows for DIA (Fig. 4 and 
Supplementary Tables 1 and 2). We then prepared a series of 
three mixtures, spiking a random set of members of each family 
into both an E. coli lysate digest and a neat background for each 
mixture (Supplementary Table 3). We analyzed each spike-in via 
DIA mass spectrometry in duplicate. For Specter analysis we used 
a spectral library consisting of 48,131 E. coli precursors together 
with the spectra of the synthetic peptides.

Specter distinguished between the synthetic precursors in each 
family despite their extremely similar library spectra, the cofrag-
mentation of several precursors in each group (indicated by over-
lapping chromatograms), and the presence of the complex E. coli 
background (Fig. 4; results for the neat background were similar 
but are not shown). Note that library retention-time information 
was not used in any way for this analysis. In contrast, the normal-
ized dot product analysis was unable to disambiguate the members 
of a group of six peptides with extremely similar spectra (Fig. 4c). 
Specter correctly identified all but one peptide (LPVLANVGQIR) 
in all runs; we had the prior expectation that this unidentified 
peptide would be problematic (Supplementary Note 6).

Distinguishing positional isomers in phosphoproteomics data
The analysis of positional isomers (peptides with identical amino 
acid sequences but with PTMs in different positions) is challeng-
ing for DDA approaches depending on where fragmentation 
spectra are sampled during elution, and it has only recently been 
explored for DIA data20,21. We analyzed 84 DIA runs of a set of 
phosphopeptide-enriched samples obtained from PC3 prostate 
cancer cells subjected to a panel of 28 kinase-pathway inhibi-
tors in biological triplicate on a Thermo Q-Exactive Plus HF. 
For Specter analysis we used a 12,546-member phosphopeptide 
library constructed from ten DDA runs of the phosphoproteome 
of PC3 cells subjected to a subset of the kinase-inhibitor perturba-
tions. This library contained 176 sets of unambiguous positional 
isomers, as determined by Spectrum Mill’s variable modification 
location score.

Of the 12,546 phosphopeptides, an average of 2,218 were iden-
tifiable per run, with 327 identified in all 84 runs considered  
(Fig. 5a). On average, each phosphosite was identified in 41 of the 
84 runs considered. This compares favorably with findings from 
a recent study of a large sample cohort conducted via SWATH-
MS (which for our purposes is equivalent to DIA), in which the 
average reproducibility of phosphosite identifications was 2.6%  
(ref. 21) (it should be noted that only 24 phosphosites were con-
sidered in that study and that the conditions being compared were 
more heterogeneous than is the case here, as the study samples 
were derived from different patient samples). Among the 176 sets 
of positional isomers in the spectral library, at least one member 
of each set was identified in 31 of the 84 runs on average, and both 
members were identified in 17 of the runs on average (Fig. 5b).

Specter identified both of the positional isomers 
GYYS[+80]PYSVSGSGSTAGSR (S4613, in reference to the posi-
tion of the phosphorylated serine on the underlying protein) and 
GYYSPYSVS[+80]GSGSTAGSR (S4618) in 75 of the 84 runs, and 
for most of these cases the isomers’ elution profiles overlapped 
in retention time (Fig. 5c). We used Specter to disambiguate the 
similar spectra (Fig. 5d) and to quantify the ratio of the ion cur-
rents of the two isomers (Fig. 5e).

The peptide GYYSPYSVSGSGSTAGSR is a constituent of the 
cytoskeletal cross-linking protein plectin, located in the last of six 
highly homologous repeat domains forming plectin’s C terminus. 
The sequence SPYS in this peptide is a known binding motif for 
CDK1, and it has been shown by site-directed mutagenesis that 
CDK1 phosphorylates plectin somewhere in repeat domain 6 
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Figure 4 | Specter chromatograms of groups of synthetic peptides with 
highly similar spectra. Members of each of three groups of highly similar 
peptides (spectra shown on the left in each panel) were chosen at random 
to be spiked into both an E. coli lysate and neat background in each of 12 
DIA runs. Chromatograms for each peptide calculated by Specter in each 
replicate run of each mixture are shown on the right in each panel. Actual 
combinations of peptides in runs are indicated in the color keys, with 
each color corresponding to a distinct member of each group (only data 
from runs in the E. coli background are shown). (a) A single amino acid 
substitution. (b) Two unique substitutions at the N-terminal position, 
creating identical y-ion series for all family members. (c) A larger family 
consisting of substitutions and transpositions at various positions in the 
sequence. Comparison of chromatograms for each peptide in this family as 
calculated by Specter versus the normalized dot product for each mixture 
(data for only one replicate per mixture are shown).
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(ref. 22). This phosphorylation was believed to occur at threonine 
4,539 on the basis of analysis of CDK1 binding motifs. However, 
the decreased ratio of S4613 to S4618 after treatment with the 
CDK inhibitor dinaciclib indicated that S4613 (the first serine 
of the SPYS motif) might be the actual target of phosphorylation 
by CDK1, or might be cophosphorylated with T4539, given the 
proximity of these residues in repeat 6.

Plectin is also known to be a substrate of MAP-kinase-interacting 
serine/threonine-protein kinase 2 (MNK2), which targets a site in 
repeat 6 distinct from the target site of CDK1 (refs. 22,23). Several 
of the perturbations we analyzed (selumetinib and PD0325901) 
target the MEK–ERK pathway, part of the MAPK signaling cas-
cade that could regulate the activity of MNK2. Supporting this, 

ERK inhibitors have been shown to prevent plectin phosphoryla-
tion by MNK2 (ref. 23). In contrast, the mean S4613/S4618 ratio 
is lower for the p38 MAPK inhibitor losmapimod than for either 
MEK inhibitor, and p38 MAPK inhibitors do not prevent MNK2 
phosphorylation of plectin23. Taken together, these considerations 
suggest that S4613 is phosphorylated by CDK1 and not by MNK2, 
with the converse being true of S4618.

Label-free quantification by DIA with Specter is 
reproducible
DIA allows for the detection of analytes with low relative abun-
dance and does not suffer from the inconsistencies of stochastic 
precursor selection24. We measured an unfractionated E. coli 
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of the isomers by Specter (S4613/S4618) across 28 chemical perturbations. Data are shown as mean (red line) ± s.e.; data points correspond to individual 
technical replicates for the indicated perturbation.
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lysate using both DDA and DIA strategies, each performed back-
to-back in triplicate on the same instrument. The DIA runs were 
analyzed by Specter, using a spectral library containing 48,131 
precursors obtained from DDA runs of ten fractions of the lysate 
(the same library as used in the synthetic spike-in experiment 
with E. coli background described above), whereas the DDA runs 
were analyzed with MaxQuant.

We found that DIA with analysis by Specter was more repro-
ducible than DDA, owing to the large numbers of precursors 
identified in one replicate DDA run but not another or with high 
variability in their quantifications between runs (Supplementary 
Fig. 4a). Identification and quantification in DIA by Specter were 
highly reproducible, and the total numbers of peptide and protein 
identifications (12,204 and 1,190, respectively) were comparable 
to those obtained with DDA (14,407 and 1,350) in the common 
precursor range of 389–1,015 m/z (we considered a protein as 
identified only if at least two of its unique peptides were identi-
fied). We quantified these observations by Pearson correlation 
coefficient (Supplementary Fig. 4b; average r2 across DDA rep-
licates, 0.72; average r2 across DIA replicates, 0.98). The dynamic 
range of DDA spanned roughly four orders of magnitude (precur-
sor quantifications ~ 1.6 × 106 to 2.5 × 1010), whereas that of DIA 
with Specter spanned more than five (~3.5 × 105 to 7.4 × 1010).

Comparison to other DIA analysis methods with LFQbench
We used Specter to analyze a publicly available data set generated 
for LFQbench9, an R package for the comparison of label-free quan-
tification results of five popular DIA analysis tools: OpenSWATH3, 

Skyline25, Spectronaut7, DIA-Umpire4, and PeakView (aka SWATH 
2.0). These data were obtained through SWATH26 analysis of pro-
teomes of three species (human, yeast, and E. coli), mixed in two 
different samples, A and B, at defined ratios, on an AB SCIEX 
TripleTOF 6600 with 64 variable-width windows.

Using a spectral library provided by the study’s authors, Specter 
identified 40,343 of the 44,294 library peptides, corresponding to 
4,733 proteins (we considered a protein as identified only if at least 
two of its unique peptides were identified in the same sample). 
The other library-based tools identified 35,517–42,439 peptides 
and 4,518–4,692 proteins (Fig. 6a). DIA-Umpire was not included 
in this comparison because it is an untargeted method, whereas 
all others used are targeted and make use of the same spectral 
library. Figure 6b displays the log ratios log2(A/B) of the most 
precise peptide quantifications between the two samples (coeffi-
cient of variation across replicates < 10%) as reported by the tools 
as functions of the peptides’ intensities in sample B. By following 
the LFQbench study methods and through comparison with the 
other tools (Supplementary Table 4)9, we found that Specter had 
the highest accuracy in quantifying E. coli peptides, which have 
the most extreme expected ratio out of the three species (the first, 
second, and third tertile mean accuracies of the five non-Specter 
tools were 0.635, 0.38, and 0.182, versus 0.16, 0.16, and 0.18 for 
Specter, respectively).

DISCUSSION
The mixed mass spectra produced by DIA are, in ideal terms, 
linear combinations of pure spectra. Although the constituents  
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of such a combination and their abundances are difficult to 
measure precisely because of shared fragments, biochemical 
noise, instrument inaccuracy, and inconsistencies in a peptide’s 
fragmentation profile across experiments, we have shown that 
a linear model enables a principled and effective approach to 
spectral deconvolution. This allows for the calculation in silico 
of total ion chromatograms for all library precursors without 
recourse to individual fragment ion traces, which is an important 
feature in cases where the user’s spectral library lacks fragment 
ion annotations.

Specter can identify and quantify precursors with highly similar 
library spectra, even when these precursors are coisolated and 
cofragmented. This has been very challenging for available tools; 
in fact, several existing methods include rules to explicitly omit 
such cases from consideration by either discarding shared frag-
ments or excluding all but one member of a given group of precur-
sors with similar spectra3,5,6.

We illustrated the use of Specter for analysis of the differential 
regulation of positional phosphoisomers across a series of per-
turbations of prostate cancer cells by kinase-pathway inhibitors. 
Other methods for disambiguation of positional isomers of post-
translationally modified peptides, such as the IPF algorithm of 
Rosenberger et al.21, may be advantageous in situations where 
separate spectra are not available for each isomer, as Specter is 
a targeted method that requires separate, pre-existing library 
spectra for each individual analyte one wishes to detect in a given 
DIA experiment. IPF requires only a single library spectrum rep-
resenting the fragment ions that are common to all positional 
isomers of a given peptide sequence. However, this approach 
does not exploit as much known information as possible and is 
likely to be less sensitive than Specter in cases where separate 
spectra are available.

Specter’s robustness to incompleteness and noise within a 
spectral library reduces the need for fractionation and time-
consuming curation of fragment ions. Given Specter’s use of  
all features in precursor fragmentation patterns, in general the 
ideal spectral library for a given DIA experiment should be  
generated from DDA runs of the samples under consideration 
with the same instrument.

In the future, we will aim to increase Specter’s scope to allow 
for the characterization of nonlibrary analytes on the basis of cor-
relations between fragment ion elution profiles, in a spirit similar 
to that of DIA-Umpire4. This will expand on the linear model 
to explicitly account for the linear contributions of unknown 
analytes to sequential MS2 spectra while simultaneously iden-
tifying and quantifying known library members. We also intend 
to introduce an online interface through which researchers may 
submit their data for Specter analysis, for users without access to 
a computing cluster or Apache Spark.

Specter helps to fulfill DIA’s promise to provide numbers of pep-
tide and protein identifications similar to those obtained by DDA 
while offering greater reproducibility across runs and a broader 
dynamic range. We expect that its high sensitivity and specificity 
will accelerate the pace of research both into DIA methods gener-
ally and into novel applications enabled by the unbiased, repro-
ducible observation and differential quantification of proteins in 
a broad spectrum of biological contexts.

Methods
Methods, including statements of data availability and any associ-
ated accession codes and references, are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Constructing the reference spectra library matrix. For con-
struction of the library spectra matrix L, which Specter uses 
as the design matrix for the underlying linear algebra problem 
(Supplementary Note 3), an instrument mass accuracy parameter 
δ is required. For the data analyzed in this paper, all of which were 
acquired on high-resolution instruments (Thermo Q-Exactive 
Orbitrap or AB Sciex TripleTOF 6600), δ was set to 10 p.p.m. 
for Orbitrap data and 30 p.p.m. for TripleTOF data. Let S be an 
acquired MS2 spectrum from the DIA run. S is analyzed using 
only a subset of the provided spectral library, as there are physical 
constraints on the possible presence of a given library member 
in S. The set of library members used to analyze S is determined 
by the following conditions (where L denotes a candidate library 
precursor):

1. The m/z ratio of L must lie inside the precursor isolation 
window from which S was acquired.

2. At least five of the m/z ratios of the peaks of the spectrum of 
L must appear as m/z ratios of peaks S.

3. If the library includes retention-time information, and the 
library retention times are directly comparable to those in the 
DIA experiment (as will be the case if, for example, the library 
was generated from DDA runs of the same samples on the same 
instrument, or both the library and acquired spectra have had 
their retention times normalized), then the library retention time 
for L must be no more than 5 min more or less than the time of the 
scan (this time window can be omitted or adjusted by the user).

Although retention-time information in the library is optional, 
it both speeds the analysis by limiting the set of precursors con-
sidered for each scan and improves the quality of the results, and 
so its inclusion is highly encouraged in cases where the library 
and DIA spectra are gathered in similar time frames.

For each MS2 scan S, the m/z coordinates of the peaks of the 
library spectra are then binned with the m/z coordinates of the 
peaks of S to obtain a vector of intensities whose length equals 
the number of peaks of S (Supplementary Note 3). Each library 
spectrum is normalized so that its total ion intensity is 1, and 
these normalized spectra are arranged as the columns of a matrix 
L whose number of rows equals the length of S.

Finding the optimal combination. Let S be an MS2 scan from 
the DIA experiment, represented as a vector of n intensity values. 
To account for peaks of library spectra not matching peaks in S, 
as described above, we append a zero to the end of this vector so 
that it has length n + 1. This extra zero serves to penalize the linear 
contributions of library spectra that have peaks with significant 
intensities that are not present in S. Let L be the corresponding 
matrix of normalized reference spectra constructed above (see 
also Supplementary Note 3). Our aim is to find the non-negative 
linear combination of the columns of L (the normalized library 
spectra) that best explains S, that is, is closest to it in terms of 
Euclidean distance. Some peaks of S might not be close to any of 
the peaks of the reference spectra, as determined using the mass 
accuracy δ, and these may be discarded from the analysis because 
they do not affect the determination of the optimal linear com-
bination (Supplementary Note 4); that is, the spectrum S is pro-
jected to the linear span of the library spectra before analysis.

With these unnecessary peaks removed, the optimal linear 
combination of the reference spectra is determined as the solution  

of the corresponding non-negative least-squares problem, which 
finds the vector c of length m (where m is the number of spec-
tral library members), all of whose entries are non-negative, 
such that the matrix product of L with c is as close as possible 
to S in the Euclidean norm among all such non-negative vectors 
(Supplementary Note 4).

Peptide identification from Specter coefficients. From the math-
ematical formulation above, we see that for every MS2 spectrum 
S acquired in the DIA run, Specter produces a vector c of non-
negative coefficients, each of which is associated with a particular 
precursor in the spectral library. Each coefficient associated by 
Specter with a library member in a given MS2 spectrum may be 
directly interpreted as the sum of the intensities of the fragments 
produced by that member’s precursor within that spectrum. This 
is a straightforward consequence of the fact that the library spectra 
are normalized to have a total ion intensity of 1 (Supplementary 
Note 3): when such a normalized spectrum L is multiplied by a 
coefficient c (meaning that the intensities of all of its peaks are 
multiplied by this constant), the total ion intensity of the resulting 
scaled spectrum c × L can be nothing other than c. As the aim of 
Specter is to represent every acquired DIA MS2 spectrum S as  
a linear combination 

S c L c L c L Nm m= × + × + + × +1 1 2 2 …

it follows that the total ion intensity of the ith library spectrum Li 
in S is simply the Specter coefficient ci. Indeed, the multiplication 
of a library spectrum L by a coefficient c is the mathematical ana-
log of the physical fragmentation of c molecules of the precursor 
whose library spectrum is L.

When we consider all MS2 spectra sequentially, this gives us an 
m × r matrix of coefficients, where m is the number of members of 
the spectral library and r is the number of MS2 scans. Each row of 
this matrix is then a time series describing the ‘elution profile’ of 
Specter coefficients of a library precursor across the course of the 
experiment (so that most entries in each row are 0). We consider 
a library precursor to be identified by Specter if this elution pro-
file contains a peak (local maximum) of at least five consecutive 
coefficients that are greater than 1 (where coefficients are consid-
ered consecutive only if they are calculated relative to sequential 
MS2 spectra for which the precursor satisfies the conditions as 
described above). This is a physical constraint that recognizes 
that total ion intensities less than 1 cannot possibly correspond 
to meaningful signal.

Because it is possible that peaks such as these may arise by 
chance, giving rise to false identifications, we used several chro-
matographic peak scores to rank the quality of our identifications 
and allow use of a target–decoy approach for estimation of false 
discovery rates10. First, we defined a peak associated with an iden-
tified precursor as a local maximum within a consecutive series of 
at least five Specter coefficients greater than 1; then we defined the 
largest peak as the peak with the highest summit among all peaks. 
The four scores associated with the precursor were then (1) the 
Specter coefficient at the apex of the largest peak, (2) the variance 
of the coefficients within the largest peak, (3) the skewness of these 
coefficients, and (4) the kurtosis of these coefficients. Equations 
for these scores are presented in Supplementary Note 5. Taken 
as a set, these four scores measure the extent to which the largest 
peak within the precursor’s Specter chromatogram resembles an 
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ideal Gaussian elution profile10. Rather than enforcing a strict 
match to a Gaussian, we used these scores to develop statistics  
for confident identifications based on the presumably poor peak 
shapes of false positives. These four scores are combined into a 
single score via linear discriminant analysis to establish cutoffs 
to separate target and decoy spectra.

Peptide quantification from Specter coefficients. Because 
the output of Specter is affected by experimental noise and the  
presence of precursors for which library spectra might not exist, 
filtering of the Specter elution profile of each precursor is essential  
to obtain accurate quantifications. To avoid bias arising from 
parametric filters, we applied a Kolmogorov–Zurbenko filter with 
three iterations and windows of width three to smooth the Specter 
elution profile; this is essentially an iterated moving window  
average27. We then calculated the quantification of the precursor 
as the area under the largest peak of this filtered profile.

Decoy spectra generation. We developed our approach to the 
generation of decoy spectra in the spirit of strategies that gen-
erate decoy spectra directly from real library spectra, rather 
than beginning with random transformations of the sequences 
of library peptides and subsequently generating decoy spectra 
based on theoretical fragmentation. To construct the set of decoy 
spectra used to analyze a given m/z window, we first chose a  
random subset of all library precursors whose m/z do not fall 
into this window, where this subset was chosen to have the same 
size as the set of true library spectra for this window. We then 
constructed the decoy spectra for this window by shifting the m/z  
coordinates of all peaks of these non-window spectra by 20 m/z. 
This method combines the main approaches of Lam et al.16 and 
Cheng et al.17. To avoid distorting the quantifications of non-decoy  
library members through the influence of decoy spectra, we used 
a two-pass approach: first, we used a hybrid target–decoy library 
to determine linear discriminant score thresholds (based on the 
set of scores described above and in Supplementary Note 5)  
to achieve a false discovery rate below 1%. We then re-ran Specter 
with the target library only, and retained only identified library 
precursors whose linear discriminant scores were above the  
determined threshold.

Mass spectrometry data processing. All raw mass spectrometry 
data files (in either Thermo RAW or AB Sciex WIFF format) were 
converted to mzML format in ProteoWizard MSConvert version 
3.0.6141 with peak-picking (centroiding). Spectral libraries are 
accepted in Skyline’s blib format25, which can be constructed from 
any of the common MS search result file formats28.

Python environment and parallelization over MS2 spectra with 
Apache Spark. Specter is written in Python 2 and runs on Apache 
Spark, a highly efficient cluster-computing framework that ena-
bles the parallelization of Specter’s core algorithm over all MS2 
spectra acquired in the course of a DIA run. All analyses in this 
paper were performed using Python 2.7.11 and Spark 1.6.0 on a 
computing cluster with 48 identical cores (Intel Xeon CPU E5-
2697 v2 at 2.70 GHz) and 250 GB RAM. mzML files are exposed 
to Python using the run.Reader() function from the Python pack-
age pymzml v. 0.7.7. A Python version between 2.7.9 and 3 is 
required to guarantee compatibility with Spark and the packages 

used by Specter. A Python list is constructed, each of whose ele-
ments is a two-column matrix containing the m/z coordinates 
and intensities of the peaks of an acquired MS2 spectrum, and 
this is converted to a Spark resilient distributed data set (RDD) 
via the parallelize() method. The Spark mapPartitions() method 
is then applied to this RDD to distribute the analysis of the indi-
vidual MS2 spectra over the computing cluster. The results are 
returned to the driver node as a list via the collect() method and 
subsequently written to a .csv file containing the Specter coef-
ficients of each precursor within each MS2 spectrum for down-
stream processing. A typical DIA experiment file (~3–5 GB) can 
be analyzed with a spectral library of ~20,000 precursors in under  
30 min by this workflow.

HEK293T spike-in experiment. HEK293T cells were cultured 
in DMEM (Gibco; 11995) supplemented with 10% heat-inacti-
vated FBS (Sigma; F4135). Once cells reached ~95% confluence 
they were harvested by scraping. Cells were pelleted at 1,000g for  
2 min. The supernatant was then removed, and the cell pellet 
was frozen in liquid nitrogen. HEK293T cells were lysed by  
5 min of exposure on ice to a lysis buffer (8 M urea, 75 mM NaCl,  
50 mM Tris-HCl, pH 8.0, 1 mM EDTA, 2 µg/mL aprotinin 
(Sigma; A6103), 10 µg/mL leupeptin (Roche; 11017101001),  
1 mM PMSF (Sigma; 78830)). The sample was centrifuged for  
10 min at 20,000g. The protein concentration of HEK293T  
proteins was determined by BCA assay to be 4.3 µg/µl. 10 mg of 
protein was reduced (5 mM dithiothreitol, 45 min) and alkylated 
(10 mM iodoacetamide, 45 min). A Tris-HCl solution (50 mM, 
pH 8) was used to dilute the samples by a factor of 4 to reach a 
concentration of 2 M urea. A two-step digestion protocol was used  
to digest the lysate: Lys-C was used in a 1:50 enzyme-to-substrate 
ratio (Wako Chemicals; 129-02541) for 2 h at 30 °C, then the 
lysate was digested overnight at room temperature with trypsin in 
a 1:50 enzyme-to-substrate ratio (Promega; V511X) on a shaker. 
Formic acid (FA; 0.5% final concentration) was added to stop 
the digestion. The sample was split into four aliquots and loaded 
onto four 100-mg-capacity C18 Sep-Pak cartridges (Waters) for 
desalting. The four aliquots were eluted with 50% acetonitrile 
(ACN)/0.1% FA, pooled together, and vacuum-concentrated 
to dryness. The HEK293T digest was resuspended using 0.1% 
TFA, and a mixture containing 96 synthetic peptides at known 
individual concentrations (Supplementary Table 5) was spiked 
into it to generate a five-point calibration curve. Each point was 
designed to contain 1 µg of HEK293T digest and 6.75, 13.5, 27, 
54, or 108 ng of total peptide on column.

All samples were analyzed with an Orbitrap Q-Exactive HF Plus 
(Thermo Fisher Scientific) mass spectrometer coupled to a nano-
flow Proxeon EASY-nLC 1000 UHPLC system (Thermo Fisher 
Scientific). The mass spectrometer was used in positive mode  
and was equipped with a nanoflow ionization source (James A. 
Hill Instrument Services, Arlington, MA); the spray voltage was 
set at 2.00 kV. The LC system, the column, and the electrospray 
voltage source (platinum wire) were connected via a stainless 
steel cross (360 µm; IDEX Health & Science; UH-906x). The col-
umn was heated to 50 °C. A volume of 3 µl was injected onto an  
in-house packed 20 cm × 75 µm diameter C18 silica picofrit  
capillary column (1.9-µm ReproSil-Pur C18-AQ beads, Dr. 
Maisch GmbH, r119.aq; Picofrit 10-µm tip opening, New 
Objective, PF360-75-10-N-5). The mobile phase had a flow rate of  
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250 nL/min and consisted of 3% ACN/0.1% FA (solvent A) and 
90% ACN/0.1% FA (solvent B). The column was conditioned 
before each sample injection. Peptides were separated using the 
following LC gradient: 0–3% B in 3 min, 5–40% B in 50 min, 40–
90% B in 1 min, stay at 90% B for 5.5 min, and 90–50% B in 30 s. 
DDA and DIA data were acquired on the same instrument. For the  
MS1 scans the resolution was set at 60,000 at 200 m/z and the  
automatic gain control (AGC) target was 3 × 106 with a maxi-
mum inject fill time of 20 ms. For DDA, MS2 scans on the top 12 
peaks doubly charged and above were acquired at a resolution of 
15,000, AGC target of 5 × 104 with maximum inject fill time of  
50 ms. Isolation widths were set to 1.5 m/z with a 0.3 m/z offset. The  
normalized collision energy (NCE) was set to 27 and dynamic  
exclusion was set to 10 s. For DIA, an overlap DIA method was used 
with 56 × 22 m/z isolation windows covering the 400–1,000 m/z 
range. In this method the isolation windows in two consecutive  
cycles have an offset of 11 m/z. The default charge state was 4, the 
resolution was 30,000 at 200 m/z, the AGC target was 1 × 106, the 
maximum inject fill time was 50 ms, the loop count was 27 and 
the NCE was set to 27.

We generated a spectral library by first searching the DDA 
runs with Spectrum Mill v. B.06.01.201 using a FASTA contain-
ing the 96 synthetic peptide sequences and the UniProt human 
protein sequences (version dated 17 October 2014). Results 
were auto-validated to a false discovery rate of 1%. This yielded 
a PepXML search result file, which was loaded into Skyline v. 
3.6.0.10162 to generate a spectral library of 29,248 HEK293T 
and 85 synthetic precursors (11 of the 96 were not identified) in  
blib format29.

Whereas manual quantifications are determined from the 
extracted ion chromatograms of only preselected fragment ions, 
quantification by Specter incorporates every peak present in 
its library spectrum. Thus, potentially significant differences 
between the quantifications are to be expected, so the similar-
ity between the two modes of analysis is more appropriately 
measured by the correlation between quantifications for each 
peptide (Fig. 2c) than by the absolute differences between  
the quantifications.

False discovery rate estimation. Of the 29,333 HEK293T and 
synthetic library precursors, 8,867 were cumulatively identified 
by Specter in all three replicate DIA runs, whereas 297 E. coli pep-
tides were cumulatively identified. Thus, if a decoy library of the 
same size as the yeast/bovine library were constructed through 
selection of 29,333 of the 48,131 E. coli library spectra uniformly 
at random, the estimated false discovery rate would be 

( / , ) , /( , ( / , ) , ) .297 48 131 29 333 8 867 297 48 131 29 333 0 02× + × ≈

Synthetic peptide experiment. Synthetic peptides were obtained 
through New England Peptide Inc. (Gardner, MA), predissolved in 
30% ACN/0.1% FA, and diluted to 100 µM in the same solvent.

To obtain library spectra for the synthetic peptides, we injected 
each peptide individually at 50 fmol, 200 fmol, and 1 pmol on 
column with wash runs in between peptides. On-line liquid chro-
matography was performed with an EASY nano-LC 1000 UHPLC 
(Thermo). Separation was performed on a 20-cm, 75-µm inner-
diameter column, packed in-house with 1.9-µm C18-AQ beads 
(Dr. Maisch) with a gradient from 2% ACN to 55% ACN over  

20 min. The data were acquired on a Q-Exactive Plus mass 
spectrometer (Thermo Fisher Scientific) in data-dependent top 
12 mode using a resolution of 70,000 for MS1 and 17,500 for 
the MS2 scans. Dynamic exclusion was disabled to obtain MS2 
multiple times for each precursor across the peak. The resulting 
raw files were searched with Spectrum Mill v. B.06.01.201 with 
a FASTA containing only the sequences of the synthetic pep-
tides and common contaminants. The best-scoring spectrum 
for each precursor was then chosen to serve as the precursor’s  
library spectrum.

DH5α E. coli were grown in Luria broth at 37 °C overnight. 
Cells were pelleted by centrifugation, washed once with cold PBS, 
flash-frozen in liquid nitrogen, and stored at –80 °C until process-
ing. For generation of the E. coli lysate digest, the cell pellet was 
thawed on ice. Lysozyme (Sigma) was added to the thawed pel-
let, and the mixture was placed on ice with periodic vortexing 
until viscous. The cells were resuspended in 8 M urea, 50 mM 
ammonium bicarbonate plus protease inhibitors (Roche), and the 
solution was sonicated with a probe sonicator for 2 min, 3 s on,  
2 s off, until no longer viscous. After centrifugation at 15,000g for 
30 min at 4 °C, protein concentration was measured by Bradford 
assay (Bio-Rad). Disulfide bridges were reduced with 10 mM 
TCEP (tris(2-carboxyethyl)phosphine; Thermo) and alkylated 
with 10 mM iodoacetamide (Thermo) for 30 min at room tem-
perature in the dark. The lysate was diluted to 1.5 M urea with 
50 mM ammonium bicarbonate and digested overnight with a 
trypsin-to-substrate ratio of 1:100. The digest was desalted on 
C18 Sep-Pak cartridges (Waters). After vacuum centrifugation, 
dried peptides were resuspended to 1 mg/mL in 30% ACN/0.1% 
FA and stored at –80 °C.

To generate library spectra of the E. coli digest, we fractionated 
peptides using a StageTip30 packed with sulfonated poly-(styrene-
divinylbenzene) resin (SDB-RPS; EMPORE). 100 µg of digest was 
fractionated starting from 20 mM ammonium hydroxide, pH 10, 
with the percentage of can increased by steps of 5, 10, 12.5, 15, 
17.5, 20, 25, 30, 35, and 50%. Assuming equal mass distribution, 
1 µg of fractionated digest was analyzed by LC-MS2. Data were 
acquired on the same instruments as listed above with changes to 
the LC gradient and the data acquisition. Peptides were separated 
on-line with an 85-min gradient from 6% 0.1% FA (buffer A) to 
30% 0.1% FA/90% ACN (buffer B), followed by an increase to 60% 
buffer B over 9 min. The mass spectrometer was set to acquire 
data at a resolution of 70,000 and an AGC setting of 3 × 106 for 
MS1. MS2 resolution was 17.5K, AGC 5 × 104, and maximum 
inject time of 100 ms. The top 12 ions identified within the pre-
cursor scan of 300–2,000 m/z that were at least doubly charged 
were selected for high-energy collisional dissociation at an NCE 
of 25. Raw files were searched by SpectrumMill v. B.06.01.201 
using the NCBI E. coli K12 DH10B FASTA sequence database  
(a FASTA for DH5α was unavailable) and auto-validated to a false 
discovery rate of 1%. The results were exported as a PepXML 
summary file, which was imported into Skyline v. 3.6.0.10162 
to generate a spectral library consisting of 48,131 precursors.  
This spectral library was exported in blib format25,28 for later use 
by Specter.

For spike-in experiments, synthetic peptide mixtures were 
constructed according to Supplementary Table 3. We created 
20 injections worth of peptide mixtures for each of the zero, sin-
gle, or double drop-out samples. The pools were then equally 
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divided either as synthetic peptides alone or into the same E. coli 
digest described above. In either case, roughly equal amounts 
of synthetic peptide material were loaded on column, regardless 
of whether E. coli background was present. For runs contain-
ing lysate background, approximately 1.5 µg of E. coli digest was 
loaded on column. DDA was performed on a Q-Exactive Plus HF 
mass spectrometer, where MS1 scans were measured at a resolu-
tion of 60,000 and an AGC setting of 3 × 106 and maximum injec-
tion time of 20 ms. MS2 scans on the top 15 peaks doubly charged 
and above were acquired at a resolution of 15,000, AGC target of 
5 × 104 and maximum inject time of 50 ms. Isolation widths were 
set to 1.7 Th with a 0.3-Th offset. NCE was set to 28 and dynamic 
exclusion was set to 15 s.

DIA data were acquired with MS1 parameters as above (range: 
300–1,200 m/z) and then using 22-Th-wide windows for MS2 
with a default charge state of 4 at a resolution of 30,000. The AGC 
target was set as 1 × 106, maximum inject time was set to 50 ms, 
and a loop count of 27 was used. NCE was set to 27. A total of 56 
× 22 Th DIA windows were used to traverse the m/z range of 400–
1,000, with the range actually traversed twice but the windows off-
set by 50%. The window centers can be found in Supplementary  
Table 1. LC and nanospray parameters were identical to those 
described by Abelin et al.31.

Positional isomers in drug-perturbed cellular systems. Sample 
preparation and experimental procedures were identical to those 
described by Abelin et al.31, and DIA runs were performed with 
the same parameters used in the synthetic peptide experiment 
described above. Drug treatments and concentrations are shown 
in Supplementary Table 6. Ten randomly chosen phosphoen-
riched samples of PC3 cells treated with the perturbations high-
lighted in bold in Supplementary Table 6 were measured by 
DDA (acquired with the same settings as the DDA runs described 
above). Results were searched using Spectrum Mill as above with 
a FASTA containing the 2014 UniProt Human proteome and 150 
common contaminants. Phosphorylations of serine, threonine, 
and tyrosine were set as variable modifications. We imported the 
resulting pepXML files into Skyline to construct a redundant blib 
containing multiple peptide–spectrum matches for each precur-
sor. Search results were further filtered by variable modification 
location score so that only spectra for which phosphosites could be 
unambiguously localized were retained, and the highest-scoring  
spectra for each precursor were extracted from the redundant 
blib to produce a nonredundant spectral library consisting of  
only confidently localized phosphopeptides. Specter was applied 
to the 84 DIA runs using this spectral library and a 10 p.p.m. 
mass accuracy.

E. coli DDA analysis with MaxQuant. RAW files obtained from 
triplicate DDA runs of the unfractionated E. coli digest described 
above were imported into MaxQuant v. 1.5.5.1. These were searched 
using the same FASTA as used by Spectrum Mill above with all 
default settings for Orbitrap instruments (“Match between runs” 

was disabled in order to assess replicate reproducibility). Results 
were analyzed using the evidence.txt output table. Only precursors 
with posterior error probability < 0.01 were retained, and the top-
scoring MS2 spectrum for each of these precursors within each 
replicate was used to determine precursor quantifications within 
each run. Protein identifications (based on all three replicates) 
were determined from the proteinGroups.txt output table.

LFQbench data set. All data were downloaded from 
ProteomeXchange (data set PXD002952). Raw WIFF files from 
the HYE124 data set (with 64 variable-width windows on a 
Triple TOF 6600) were converted to mzML with ProteoWizard as 
described above. We used a spectral library provided by the study’s 
authors (ecolihumanyeast_concat_mayu_IRR_cons_openswath_
64w_var_curated.csv) that consisted of precursors with annotated 
fragment ions in CSV format compatible with OpenSWATH. The 
mass accuracy parameter δ was set to 30 p.p.m.

For comparisons to other analyses, only the results from the 
first iteration of the LFQbench study were used. This was based 
on the consideration of the optimizations and open discussion 
among software developers that took place for the second itera-
tion, in which we did not participate.

Code availability. Specter is available as an open-source software 
tool at https://github.com/rpeckner-broad/Specter.

Life Sciences Reporting Summary. Further information on 
experimental design is available in the Life Sciences Reporting 
Summary.

Data availability. All original mass spectrometry proteomics 
data used to support the conclusions of this study have been 
deposited to the ProteomeXchange Consortium via the PRIDE32 
partner repository with the data set identifier PXD006722. 
The data used from the LFQbench study are available from the 
ProteomeXchange Consortium via the PRIDE partner reposi-
tory with the data set identifier PXD002952. Source data for  
Figures 2–6 are available online.
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Nature Research wishes to improve the reproducibility of the work that we publish. This form is intended for publication with all accepted life 
science papers and provides structure for consistency and transparency in reporting. Every life science submission will use this form; some list 
items might not apply to an individual manuscript, but all fields must be completed for clarity. 

For further information on the points included in this form, see Reporting Life Sciences Research. For further information on Nature Research 
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    Experimental design
1.   Sample size

Describe how sample size was determined. As our study presents a new method for analyzing mass spectrometry data, rather than an 
attempt to illustrate a statistically significant biological phenomenon , no sample size 
considerations were relevant.

2.   Data exclusions

Describe any data exclusions. We excluded data that would be considered "noise" in mass spectrometry data, i.e. signals of 
very low intensity relative to the main signal of interest. This was based on pre-established 
quantitative criteria.

3.   Replication

Describe the measures taken to verify the reproducibility 
of the experimental findings.

All mass spectrometry experiments were performed at least in duplicate (most often in 
triplicate), with high reproducibility in almost all cases.

4.   Randomization

Describe how samples/organisms/participants were 
allocated into experimental groups.

One of our experiments did involve assignments of synthetic peptides to groups, which were 
randomly chosen by co-author Samuel Myers.

5.   Blinding

Describe whether the investigators were blinded to 
group allocation during data collection and/or analysis.

For the synthetic peptide experiment, group assignment was chosen randomly by co-authors 
S.M. while analysis was performed by R.P., who had no knowledge of the members of each 
group.

Note: all in vivo studies must report how sample size was determined and whether blinding and randomization were used.

6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the 
Methods section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same 
sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

Test values indicating whether an effect is present 
Provide confidence intervals or give results of significance tests (e.g. P values) as exact values whenever appropriate and with effect sizes noted.

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars in all relevant figure captions (with explicit mention of central tendency and variation)

See the web collection on statistics for biologists for further resources and guidance.

Nature Methods: doi:10.1038/nmeth.4643
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   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this 
study. 

The purpose of our study was to present a new software tool. As stated in the manuscript, 
our custom code is available on GitHub at github.com/rpeckner- broad/Specter.

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made 
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for 
providing algorithms and software for publication provides further information on this topic.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of 
unique materials or if these materials are only available 
for distribution by a third party.

No unique materials were used.

9.   Antibodies

Describe the antibodies used and how they were validated 
for use in the system under study (i.e. assay and species).

No antibodies were used.

10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used.   

PC3 cell lines were obtained from ATCC (catalog number CRL-1435).

b.  Describe the method of cell line authentication used. DNA fingerprinting was applied using the following SNPs: Chromosome SNP ID Position 
5 rs10037858 156766708 
1 rs532905 189620278 
1 rs2229857 154573967 20 rs6104310 44354538 18 rs9304229 38247872 6 rs2273827 
160211339 5 rs2036902 49696932 
1 rs6679393 31770944 
5 rs2369754 99156362 
1 rs1052053 156202173 2 rs6726639 112753097 11 rs2512276 124115370 17 rs6565604 
79589242 7 rs6972020 68182022 
8 rs13269287 124453662 1 rs10888734 52266242 7 rs6966770 115895718 7 rs2639 
6066461 
2 rs10186291 112748514 2 rs7598922 39082344 
4 rs2709828 152355268 2 rs1131171 232326417 4 rs7664169 99037859 17 rs1437808 
4175846 
3 rs11917105 183371250 12 rs10876820 55978465 5 rs2910006 140590766 24 AMG_3b 
6737949 
14 rs8015958 67086676 13 rs3105047 55937194 3 rs5009801 101058775 6 rs9277471 
33053682 18 rs3744877 77894844 9 rs1549314 127910307 6 rs9369842 48994615 5 
rs390299 153363334 2 rs1734422 10932207 22 rs9466 38273749 
19 rs4517902 29851078 13 rs6563098 79887237 9 rs965897 77175017

c.  Report whether the cell lines were tested for 
mycoplasma contamination.

The cell lines were tested for mycoplasma contamination.

d.  If any of the cell lines used are listed in the database 
of commonly misidentified cell lines maintained by 
ICLAC, provide a scientific rationale for their use.

None of the cell lines we used are listed in the ICLAC database. 

    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide all relevant details on animals and/or 
animal-derived materials used in the study.

No animals were used.

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population 
characteristics of the human research participants.

The study did not involve human research participants.

Nature Methods: doi:10.1038/nmeth.4643
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