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Metabolic flux analysis via 13C labeling (13C MFA) quantita-
tively tracks metabolic pathway activity and determines overall
enzymatic function in cells. Three core techniques are
necessary for 13C MFA: (1) a steady state cell culture in a
defined medium with labeled-carbon substrates; (2) precise
measurements of the labeling pattern of targeted metabolites;
and (3) evaluation of the data sets obtained from mass spec-
trometry measurements with a computer model to calculate the
metabolic fluxes. In this review, we summarize recent advances
in the 13C-flux analysis technologies, including mini-bioreactor
usage for tracer experiments, isotopomer analysis of metabo-
lites via high resolution mass spectrometry (such as GC-MS,
LC-MS, or FT-ICR), high performance and large-scale iso-
topomer modeling programs for flux analysis, and the integration
of fluxomics with other functional genomics studies. It will be
shown that there is a significant value for 13C-based metabolic
flux analysis in many biological research fields. # 2008 Wiley
Periodicals, Inc., Mass Spec Rev 28:362–375, 2009
Keywords: steady state; mini-bioreactor; mass spectrometry;
isotopomer modeling; functional genomics

I. INTRODUCTION

Microorganisms have evolved complex metabolic pathways that
enable them to utilize various nutrients and survive in their local
environment. To understand cell metabolism and its response to
environmental and genetic changes, an array of genomic and

functional genomics tools are now available, including genomic
and metagenomic sequencing (Alm et al., 2005; Tringe & Rubin,
2005; Warnecke et al., 2007) and transcript, protein, and
metabolite profiling (Sauer, 2004; Wiechert, 2001). However,
the most physiologically relevant description of a cell’s
metabolism remains the set of metabolic fluxes, which represent
the final functional output of the interaction of all the molecular
machinery studied by the other ‘‘omics’’ fields (Fig. 1).
Regulation of cellular processes might not always be reflected
in the gene annotation, transcript, or protein profiles (Fong et al.,
2006; Sauer, 2004; Tang et al., 2007e). The transcription profile,
moreover, might have little relationship to the final flux profile of
cells due to post-transcriptional regulation of protein synthesis
and enzyme activities (Fong et al., 2006; Hua et al., 2007). The
metabolic flux profile of a cell, however, reflects the global
reaction rates in the cellular metabolic network, and is a key
determinant of cellular physiology (Sauer, 2004).

A large number of comprehensive microbial flux studies
have been performed with stoichiometric metabolic flux analyses
(also referred to as flux balance analysis, FBA) (Varma &
Palsson, 1994). As its name implies, stoichiometric MFA uses the
stoichiometry of the metabolic reactions (e.g., global metabolite
balances of cofactors such as ATP, NADH, and NADPH) in
addition to a series of physical, chemical, and biological
characteristics (extracellular fluxes, thermodynamic direction-
ality, enzymatic capacity, gene regulation, etc.) to constrain the
feasible fluxes for a given physiological condition. If the number
of measured extracellular fluxes equals the number of degrees of
freedom it is possible to calculate the remaining fluxes, but,
typically, the number of constraints is much smaller than the
number of reactions in the metabolic network (Vallino &
Stephanopoulos, 1993). The system is then underdetermined
and it is necessary to postulate an objective function that one
assumes the cell uses in its native ‘‘program’’ (growth rate
maximization, for example) to calculate a set of predicted fluxes
(Stephanopoulos, Aristidou, & Nielsen, 1998). The general
applicability of this optimization principle has been repeatedly
called into question because cellular metabolism in several
biological systems seems to display sub-optimal performance
(Fischer & Sauer, 2005; Schmidt et al., 1998; Schuetz, Kuepfer,
& Sauer, 2007).
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13C metabolic flux analysis improves on stoichiometric
MFA by using a completely different set of constraints derived
from carbon-labeling experiments. These experiments consist of
feeding the culture with a defined 13C-labeled substrate, and
measuring, through NMR or MS, the isotopic enrichment in
intracellular metabolites (typically amino acids). This informa-
tion is stored in terms of isotopomers (i.e., each of the possible
labeling states in which a particular metabolite can be found
(Wiechert, 2001)). The resultant 13C-labeling in the intracellular
metabolites imposes important constraints on how the labeled
carbon substrate is distributed throughout the metabolic network

and, hence, on the identity of the metabolic fluxes (Iwatani,
Yamada, & Usuda, 2008; Sauer, 2006; Wiechert, 2001). These
constraints are enough to solve for the central carbon flux
distribution without the need of stoichiometric balances. The
general schematic of the procedure is illustrated in Figure 2.

Both approaches of MFA (stoichiometric and 13C based)
display advantages and disadvantages. Stoichiometric MFA can
be scaled to deal with complete genomes and can be used in a
predictive as well as a descriptive fashion but has difficulty in
predicting fluxes through reversible reactions or reactions that
might form futile cycles (Stephanopoulos, Aristidou, & Nielsen,

FIGURE 1. Omics tools to investigate cellular metabolism. DNA, microarray and protein images were

obtained from Wikimedia Commons (http://commons.wikimedia.org/wiki/main_page). The molecular

structure of ATP was obtained from ChemDraw Ultra 8.0. [Color figure can be viewed in the online issue,

which is available at www.interscience.wiley.com.]
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1998; Wiechert & de Graaf, 1997). On the other hand, 13C MFA
does not require the assumption of an optimization objective and
usually provides more accurate flux estimations since it uses the
(highly relevant) isotopomer data; however, 13C MFA can only
be used in a descriptive fashion (i.e., it requires carbon labeling
data), typically only tackles the central carbon metabolism, and is
quite expensive to perform because of the high price of labeled
feed.

The 14C-labeling experiments by Blum and Stein (1982) can
be seen as the earliest direct precursor of 13C MFA. Since then,
13C-based flux methods have become a key technology to analyze
metabolic networks and to provide support information for
metabolic engineering applications (Wiechert, 2001). In the last
two decades, 13C-based flux analysis has undergone significant
developments that range from improvements in measuring the
labeling patterns of targeted metabolites to computational
algorithms for flux calculation. Such advancements have signi-
ficantly extended the potential of 13C-based flux analysis for
diverse applications in the fields of metabolic engineering,
bioremediation, and biomedical research. This review summa-
rizes the recent advances in the 13C-based fluxomics field for
microbial systems and points out some possible future directions.

II. RECENT APPLICATION OF 13C-BASED
FLUX ANALYSIS

Over the past decade, the high-throughput and high-content
analysis of the cellular genome, transcriptome, proteome, and
metabolome, commonly referred to as ‘‘omics,’’ has been
developed to investigate a variety of organisms. What has lagged
well behind those omics studies, but might in fact be the most
important indicator of cellular physiology, is the study of the cell

metabolic fluxes (fluxome). A quick search of the PubMed
database (http://www.pubmed.gov) shows that the number of
articles on flux analysis, specifically 13C-based flux analysis
to measure actual metabolic network, is several orders of
magnitudes fewer than those for other omics studies (Table 1),
in spite of the fact that flux profiles might provide a more accurate
description of cell physiology (Sauer, 2004, 2006). This is due to
a variety of reasons, including the high cost of labeled substrates,
the requirement of specialized equipment (e.g., MS or NMR) for
determination of isotopic labeling and significant mathematical/
statistical analysis (i.e., isotopomer modeling of metabolism).
Furthermore, this approach is not amenable to all biological
systems, because many organisms cannot grow in a defined
minimal medium with labeled carbon substrates. Finally, typical
13C flux analysis provides information about flux distributions
for central carbon metabolism. Only recently has13C flux
analysis been performed for large-scale metabolic networks
(Suthers et al., 2007).

During the last decade, measurement of metabolic fluxes via
13C-labeling has developed quickly across a diverse set of
applications (summarized by Table 2), including:

* Pathway bottleneck identification in industrial microorgan-
isms with the final objective of optimizing biomass and
metabolite synthesis and, ultimately, providing guidelines
for genetic engineering. Rational manipulation of cellular
metabolism for product biosynthesis is one of the main drivers
for metabolic flux analysis.

* Gene function validation in organisms and development of
new insights into active pathways under specific culture
conditions. Every year, millions of dollars are spent on
sequencing genomes of microorganisms and mammals.
Whereas annotated and expressed genes may reflect the
potential metabolism of a cell, flux analysis provides a

FIGURE 2. Protocol for 13C-based flux analysis. [Color figure can be viewed in the online issue, which is

available at www.interscience.wiley.com.]

& TANG ET AL.
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valuable method to validate the proposed enzyme activities
and the physiology of the cell. Flux analysis also reveals the
responses of cellular metabolism to different growth con-
ditions or environmental stresses.

* Drug-target search for a variety of diseases: pathogens or
aberrant cells (e.g., cancer cells) regulate specific metabolic
pathways to benefit their survival inside hosts. Studying the
flux distributions in these cells’ metabolic networks might
reveal specific pathways that are essential for growth, and
could be potential drug targets.

III. ADVANCES OF TECHNOLOGIES ASSOCIATED
WITH 13C METABOLIC FLUX PROFILING

Over the last few decades, a variety of methods associated with
13C flux analysis have been developed. These methods include
high-throughput cell culture experiments, accurate determina-
tion of metabolites’ labeling patterns by high-resolution mass
spectrometry, and new algorithms for flux calculation.

A. High Throughput 13C-Labeled Cell Culture
13C-based flux analysis is most easily done under metabolite and
isotopomer steady state, which can be achieved by continuous
feeding over three generation times (Tang et al., 2007c). Typical
bioreactors with precise chemostat control often have a working
volume over 0.5 L. Hence, experiments that use 13C-labeled
substrates can become very expensive, because the market price
of labeled glucose or other carbon substrates is over $100/g
(www.isotope.com). One way to reduce the cost of labeled
medium is to use unlabeled medium to achieve metabolic steady
state, and then switch to an identical medium that contains
labeled carbon substrates to obtain isotopic data. Because this

approach might introduce significant bias from the residual
unlabeled carbon, it requires a computational method based on
the standard wash-out kinetics of a chemostat culture in steady
state to correct the measured isotopomer data (Dauner, Bailey, &
Sauer, 2001; Toya et al., 2007; Zhao & Shimizu, 2003). On the
other hand, high-resolution mass spectrometry technology can
detect the metabolites at the level of nano-moles (i.e., <5 mg
biomass is sufficient to measure all proteinogenic amino acids), a
large volume of expensive labeled culture is no longer necessary.
To have a high-throughput and more economical method, shake
flasks or small-scale chemostat systems (<10 mL) are often used
for the purpose of reducing experiment costs (Nanchen et al.,
2006). Shake flasks, for example, can be used for steady-state flux
analysis so long as the cells have maintained exponential
growth for a sufficiently long time (Sauer et al., 1999). Even in
batch cultures as small as 1 mL, metabolic fluxes are directly
comparable to those from cells grown in aerobic bioreactors
(Fischer, Zamboni, & Sauer, 2004). As such, deep-well micro-
plates can be used to screen the intracellular fluxes of Escherichia
coli and Saccharomyces cerevisiae (Cakar et al., 2005; Fischer,
Zamboni, & Sauer, 2004; Sauer, 2004). Besides shake flasks and
micro-plates, novel mini-bioreactors with a volume of 1–10 mL
have been developed and are commercially available (Kostov
et al., 2001; Maharbiz et al., 2004; Puskeiler et al., 2005; Tang
et al., 2006). Micro-reactors not only control pH and temperature,
but also automatically maintain the oxygen supply (a lack of
which is a limitation often observed in shake flasks) and achieve
stable dissolved oxygen levels throughout the entire growth
period. These high-throughput cultivation systems have been
shown to give reproducible results and extraordinary flexibility
for tracer experiments under different growth conditions (Weiss
et al., 2002; Yang, Wittmann, & Heinzle, 2006).

Certain considerations need to be accounted for when
choosing the position of the labeled carbon substrate and its
composition in the cell culture medium. Generally, for fully

TABLE 1. Publications with different omics tools from PubMed database

Omics Search key

words

Total

Papers

Review papers Earliest paper

on PubMed

Genomics Genome sequence 346,859 19,459 ~1960s

Transcriptomics DNA microarray      28,244 3,130  ~ 1995

Transcriptome 32,301 3,366 ~1982

Proteomics Protein analysis       1812,232 89,892 ~1910s

Proteome 10,356 1,921 ~1995

Metabolomics Metabolite

analysis

31,581 931 ~1950s

Fluxomics Metabolism+

Flux analysis

8,017 388 ~1950s

13
C + flux 651 26 ~1980s

Results as of March 24th, 2008.
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TABLE 2. Examples of recent application of 13C-based flux analysis

Authors Organisms Culture method/

Measurement

Findings

Model Industrial Microorganisms

(Suthers et

al. 2007)

Escherichia coli Chemostat

culture; GC-MS

Used a large scale flux model to analyze

engineered amorphadiene producing strain.

(Fischer

and Sauer

2003b)

E. coli Chemostat

culture; GC-MS

Discovered a novel metabolic cycle catalyzes

glucose oxidation and anaplerosis under

carbon limited conditions.

(Nanchen

et al.

2006)

E. coli Chemostat

culture;

GC-MS

Revealed the distribution of almost all major

fluxes varied nonlinearly with dilution rate

in chemostat culture.

(Dauner et

al. 2001;

Dauner et

al. 2002;

Fischer

and Sauer

2005)

Bacillus subtilis Chemostat or

shaking flask

culture; NMR or

GC-MS

Revealed the fluxes through central

metabolism when different carbon

substrates are used in carbon-limited

chemostat cultures. The robustness of

central metabolism was proposed.

 (Blank et

al. 2005a)

Saccharomyces
cerevisiae

Mini-batch

(deep-well

plates) culture;

GC-MS

Revealed mechanistic principles of

metabolic network robustness to null

mutations in yeast, i.e., 75% network

reactions have redundancy through

duplicate genes.

Novel  Microorganisms

(Tang et

al. 2007c)

Shewanella
oneidensis

Chemostat

culture; GC-MS

+ NMR

Revealed the regulation of central

metabolism under various oxygen

conditions.

(Tang et

al. 2007a)

Shewanella
oneidensis

Batch culture;

GC-MS

Revealed the effect of fullerene nano-

particles on cellular metabolism

(Risso et

al. 2008;

Tang et al.

2007b)

Geobacter
metallireducens

Anaerobic batch

culture; GC-MS

Confirmed a complete TCA cycle under Fe
3+

reducing condition and found an unusual

isoleucine biosynthesis pathway.

(Tang et Desulfovibrio Anaerobic batch     Revealed an incomplete central pathway and

al. 2007e) vulgaris culture; GC-MS

+ FTICR

found the R-type citrate synthase.

(McKinlay

et al.

2007)

Actinobacillus
succinogenes

Anaerobic batch

culture; GC-MS

+ NMR; in vitro

enzyme assay

performed

Studied carbon flux distributions and redox

balance for succinate production.

(Yang et

al. 2002)

Cyanobacterial
Synechocystis

Photosynthetic

bioreactor, GC-

MS + NMR

Calculated cyanobacterial central carbon

metabolism in both heterotrophic and

mixotrophic conditions

(Continued)

& TANG ET AL.
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labeled carbon substrates (also called [U-13C]), a mixture of 10–
20% with unlabeled substrates is used for cell culture. This type
of mixture has been proved to give more reliable flux results
if NMR is used for isotopomer analysis rather than GC-MS,
because NMR can better determine the labeled carbon positions

(Tang et al., 2007c). On the other hand, if a substrate with the
proper position labeled is chosen, the GC-MS data of resulting
metabolites can also give confident flux results through most
pathways. For example, the reactions of the pentose phosphate
and Entner–Doudoroff pathways can be particularly well

TABLE 2. (Continued)

(Fuhrer et

al. 2005)

Agrobacterium
tumefaciens,
Sinorhizobium
meliloti,
Rhodobacter
sphaeroides,
Zymomonas
mobilis,
Paracoccus
versutus,

Batch cultures

and GC-MS

By comparing seven different species , it was 

shown that the Entner-Doudoroff pathway and

pyruvate bypass are commonly used. All aerobes 

exhibited  fully respiratory metabolism without 

significant overflow metabolism.

(Blank et

al. 2005b)

fourteen

Hemiascomycetous
yeasts

Shaking flask

and GC-MS

Findings include: compartmentation of

amino acid biosynthesis in most species

was identical to that in Saccharomyces
cerevisiae. The flux through the pentose

phosphate (PP) pathway was correlated to

the yield of biomass, but the operation of a

yet unidentified mechanism for NADPH

reoxidation in Pichia angusta is suggested.

Plant or mammalian cells

(Sriram et

al. 2007)

Catharanthus
roseus

Liquid medium

batch culture;

NMR

Fluxes analysis of plant hairy root system

quantifies the carbon flows through three-

compartments: plastid, cytosol and

mitochondrion.

(Allen et

al. 2007)

Soybeans (Glycine
max)

Grown in a

greenhouse with

labeled glucose

medium; GC-MS

Measurements of labeling of monomers

from starch, cell wall and protein glycans

estimate key carbon fluxes in the

compartmentalized flux network of plant

and MNR cells.

(Forbes et

al. 2006)

breast cancer cells     roller bottles

with rich

medium ; NMR

The observed dependence of breast cancer

cells on pentose phosphate pathway

activity and glutamine consumption for

estradiol stimulated biosynthesis suggests

that these pathways may be targets for

estrogen-independent breast cancer

therapies.

(Yang et

al. 2008a)

mammary

carcinoma cells

Culture dishes

with rich

medium; NMR

and GC-MS

An integrated approach for the analysis of

metabolome and fluxomics to understand

fluxes through the key central metabolic

pathways and biosynthetic pathways of

fatty acids / amino acids in cancer cells.

(Meadows

et al.

2008)

human epithelial

breast cells

Culture dishes

with rich

medium; GC-MS

The unique metabolic characteristics of

cancerous breast cells are revealed by a

simple flux model based on isotopic

Enrichment in free metabolites

ADVANCES OF 13C-BASED FLUX ANALYSIS &
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differentiated using 1st position labeled glucose but not with fully
labeled glucose (Fischer, Zamboni, & Sauer, 2004; Suthers et al.,
2007). To achieve the most reliable metabolic fluxes computed
based on the isotopomer distribution measured using NMR and
GC-MS, mixture of singly labeled, doubly labeled, and fully
labeled carbon substrates are recommended. A statistical
analysis showed that the best feasible mixture of labeled carbon
substrates for cultivation of Synechocystis sp. is 70% unlabeled,
10% [U-13C] and 20% [1,2-13C2] labeled glucose (Arauzo-
Bravo & Shimizu, 2003). Finally, the labeled carbon substrates
purchased from commercial companies often contain a small
amount of impure substrates (purity is <99%), which may
adversely affect cell growth (Tang et al., 2007e). Therefore, if
large amounts of labeled carbon sources are used in the culture,
the purchased labeled substrates have to be further purified to
remove the potential toxic compounds.

B. Accurate Isotopomer Determination

Isotopomer analysis of metabolites allows branching (e.g., the
pentose phosphate pathway vs. glycolysis) and circular (e.g.,
TCA cycle) pathway fluxes to be determined, because the
labeling pattern of metabolites in these pathways is very sensitive
to the amount of flux through them (Stephanopoulos, Aristidou,
& Nielsen, 1998). Proteinogenic amino acids are often used for
isotopomer analysis because they acquire the labeling pattern of
their central metabolic precursors and are abundant and stable.
There are a total of 20 amino acids, but only 16 of them can
be accessed after protein hydrolysis via 6 M HCl at high
temperature (cysteine and tryptophan are degraded; glutamine
and asparagines are converted to glutamate and aspartate
respectively) (Daunder & Sauer, 2000). The 16 amino acids
can provide the isotopic labeling information of 8 crucial pre-
cursor metabolites: pyruvate, acetyl-CoA, 3-P-glycerate, phos-
phoenolpyruvate, erythrose-4-P, oxaloacetate, 2-oxo-glutarate,
and ribose-5-P. Therefore, knowing the isotopomer distributions
in these key metabolites provides enough constraints on the
central carbon metabolic network model to confidently calculate
the flux.

The experimental measurements of labeled carbon in amino
acids or other metabolites can be done either by nuclear magnetic
resonance (NMR) spectroscopy or by gas chromatography-mass
spectrometry (GC-MS). NMR spectroscopy was a common
technique for the early period of modern 13C-flux analysis,

because it can be used to determine the position of the labeled
carbon atoms in metabolites (de Graaf, 2000; Malloy, Sherry, &
Jeffrey, 1988; Sauer et al., 1997; Szyperski, 1995, 1998).
However, the overall sensitivity of NMR is significantly lower
than that of GC-MS. GC-MS, currently the most popular
technique, detects the mass distributions, which are the fractions
of the total population of any particular molecule or molecular
fragment that are unlabeled, singly labeled, doubly labeled, etc.
(Christensen & Nielsen, 1999; Daunder & Sauer, 2000;
Wittmann, 2007). Although this type of data offers no information
about the position of all labeled atoms, some of this information
can be determined by fragmenting molecules to provide addi-
tional labeling information at certain carbon positions (mostly the
carboxyl group) (Wahl, Dauner, & Wiechert, 2004).

Analysis of amino acids or charged/highly polar metabolites
via gas chromatography requires that these metabolites are
derivatized, commonly with silylation reagents, to render the
molecules volatile enough to enter the GC column (Fig. 3). N-
(tert-butyldimethylsilyl)-N-methyltrifluoroacetamide (TBDMS
method) is most common derivatizing agent (Antoniewicz,
Kelleher, & Stephanopoulos, 2007a; Daunder & Sauer, 2000;
Wahl, Dauner, & Wiechert, 2004). To measure the extent
of labeling in free metabolic acids, such as pyruvate or succinate,
a more gentle and sensitive derivatization agent, N,O-bis-
(trimetylsilyl)trifluoroacetamide (BSTFA), can also been used
(Meadows et al., 2008; Tang et al., 2007d) (Fig. 3). The
derivatization step introduces significant amounts of naturally
labeled isotopes (‘‘noise’’), including 13C (1.13%), 18O (0.20%),
29Si (4.70%), and 30Si (3.09%), such that the raw mass
isotopomer spectrum must be corrected prior to calculation of
metabolic fluxes (Daunder & Sauer, 2000; Hellerstein & Neese,
1999; Lee, Bergner, & Guo, 1992; van Winden et al., 2002;
Wahl, Dauner, & Wiechert, 2004; Wiechert & de Graaf, 1996).
Another disadvantage of GC-MS is that the accuracy of
isotopomer measurement can be affected by the choice of
the GC-MS spectrum integration algorithm, sample concen-
tration, and overlapping fragments (Antoniewicz, Kelleher, &
Stephanopoulos, 2007a).

High-resolution and highly sensitive mass spectrometers
can be used to precisely measure the labeling pattern of
amino acids and metabolites in central metabolic pathways (at
concentrations as low as nM). Liquid chromatography-mass
spectrometry/mass spectrometry (LC-MS/MS) has been used to
determine intracellular free amino acids to profile metabolic flux
changes during fed-batch cultivation (Iwatani et al., 2007; Nöh

FIGURE 3. The molecular structure and the bond fragmentation positions between two silyation-

derivatized amino acids. The dotted line represents the cracking position during ionization.

& TANG ET AL.
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et al., 2007). This approach, which involves the labeling of free
metabolites with fast-turnover times, has great potential to
investigate metabolism during various cell growth phases,
because the phase dependent metabolism is difficult to
accomplish using proteinogenic amino acids. In a related fashion,
GC-MS, LC-MS, and NMR have been combined to extract
maximal isotopomer information from amino acids. The
information has been used to accurately determine the metab-
olism in mitochondria and the cytosol in S. cerevisiae strains
(Kleijn et al., 2007). Capillary electrophoresis time-of-flight
mass spectrometry (CE-TOF MS) has been used to measure
isotopomers of thirteen unstable metabolites in central metab-
olism, including some unstable phosphorylated molecules such
as 3-P-glycerate, phosphoenolpyruvate, and ribose-5-P (Toya
et al., 2007). Thus, CE-MS allows metabolic flux analysis
directly from metabolites without any measurement of amino
acids. Recently, Fourier transform-ion cyclotron resonance mass
spectrometry (FT-ICR MS), with direct infusion via electrospray
ionization, was used to measure the metabolite isotopomer
distribution in a biomass hydrolysate of Desulfovibrio vulgaris
Hildenborough to unveil an unusual citrate synthase activity
(Pingitore et al., 2007). This method can determine the 13C
positions in the skeleton of the amino acid based on specific
fragmentation patterns.

Measurement of labeling in central metabolites, other than
proteinogenic amino acids, can significantly extend the scope of
13C-based flux analysis applications and improve the accuracy of
flux determination. Because 13C MFA derives flux distributions
from the labeling of amino acids produced by the labeled feed
once it percolates through the metabolic network, it requires
a minimal medium to avoid the introduction of a bias into the
isotopomer measurements. However, many pure cultures are
non-viable without nutrient supplements. When cells are grown
in a rich medium that contains amino acids, only those
proteinogenic amino acids synthesized from the central metab-
olism (e.g., alanine, aspartate, and glutamate) and not taken up
from the medium can be used for flux determination using
standard methods (Christiansen, Christensen, & Nielsen, 2002).
To circumvent this problem, highly sensitive mass spectrometers
can be used to directly obtain the isotopomer information from
free central metabolites (e.g., acids in the TCA cycle). Provided
that the amino acids are not metabolized, use of isotopomers
of central metabolic intermediates will allow calculation of
metabolic fluxes even when amino acids are supplemented into
the medium. Additionally, this strategy avoids the possible
mistakes of acquiring the labeling pattern of metabolites
(e.g., amino acids) for organisms that are not well-known or
where holes in genomic annotation are present (e.g., the
alternative isoleucine pathway in Geobacter spp. contain holes
in the annotation that might introduce errors in metabolic flux
calculations) (Risso et al., 2008; Tang et al., 2007b).

C. High-Performance Flux Calculation Algorithms

Metabolic fluxes cannot be measured directly but, rather, must be
inferred through model based data evaluation from the knowl-
edge of the reactions involved, the information contained in the
amino acid/metabolite labeling, and the external fluxes (Fig. 4).

Hence, computational algorithms are a key component of
13C-based flux analysis (Sauer, 2006; Schmidt, Nielsen, &
Villadsen, 1999a; Schmidt et al., 1999b; Wiechert, 2001).
Because finding analytical expressions for the internal fluxes as
a function of carbon-labeling data is, for all practical cases,
impossible, the determination of fluxes is usually achieved
through a heuristic recursive procedure (Fig. 5). The computa-
tional bottlenecks for this procedure are: (1) how to best choose
the new set of fluxes based on the past information on the error
function e({vi}) so as to minimize the number of steps necessary
to reach its global minimum without getting trapped in the
relative minima, and (2) calculating the amino acid/metabolite
labeling pattern from the assumed set of fluxes {vi}.

Finding the input that optimizes a function (function
optimization) has been an intensely studied challenge in
numerical analysis. An array of tools (Floudas & Pardalos,

FIGURE 4. Inputs for metabolic flux analysis. The information on the

metabolic reactions, amino acid/metabolite labeling and extracellular

fluxes is combined to produce the error function e (average difference

between measured and computed labeling patterns). The predicted

labeling can be computed following different methods (see main text)

and then coupled to a chosen nonlinear solver (see main text) to solve for

the fluxes following the iterative procedure in Figure 5.

FIGURE 5. Recursive procedure to obtain fluxes from amino acid/

metabolite labeling information. A set of fluxes {vi} is initially chosen

and the expected amino acid/metabolite labeling is calculated under the

assumed fluxes {vi}. This computationally generated labeling is

compared with the labeling obtained experimentally and the difference

is quantified as the error function e({vi}). A new set of fluxes {vi} is then

chosen so as to try to decrease e({vi}). This procedure is repeated until the

calculated labeling and the experimental data are within the experimental

error. [Color figure can be viewed in the online issue, which is available at

www.interscience.wiley.com.]
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1992; Goldberg, 1989; Nocedal & Wright, 1999; Press et al.,
1992) is available to tackle the first bottleneck. Among those
methods used in 13C-based flux analysis are global search
algorithms such as simulated annealing and evolutionary
algorithms (Dauner, Bailey, & Sauer, 2001; Forbes, Clark, &
Blanch, 2001; Schmidt et al., 1999b; Zhao & Shimizu, 2003); and
local search algorithms such as the Levenberg–Marquardt
method (Yang et al., 2008a; Zhao & Shimizu, 2003), the
Nelder–Mead method (Wiechert et al., 2001), Sequential
Quadratic Programming (SQP) (Wiechert et al., 2001), or a
hybrid SQP/Newton algorithm (Yang, Frick, & Heinzle, 2008b).
Although local search algorithms might easily become trapped in
local minima, they are typically much faster than global search
algorithms. Hence, they can be run many times with different
initial points and have the best solution chosen, in the same
amount of time that a single global search would be performed.
Although no systematic comparison between methods has been
published, the Levenberg–Marquardt method (Young et al.,
2008) and a range-restricted evolutionary algorithm (Möllney
et al., 1999; Nöh et al., 2007; Nöh & Wiechert, 2006) are used for
the most computationally demanding flux analysis: non-sta-
tionary metabolic flux analysis.

Development of computational methods for 13C-based flux
analysis has, therefore, focused on speeding up the calculation of
amino acid/metabolite labeling from an assumed set of fluxes.
Several methods have been proposed, including the iterative
averaging isotopomer method (Schmidt, Nielsen, & Villadsen,
1999a), the cumomer method (Wiechert et al., 1999), the
Elementary Metabolic Unit (EMU) method (Antoniewicz,
Kelleher, & Stephanopoulos, 2007b), the isotopomer path tracing
method (Forbes, Clark, & Blanch, 2001), and the fractional
labeling method (Riascos, Gombert, & Pinto, 2005). In practice,
the only methods under continuous development are the
cumomer and EMU method. The cumomer method was
developed as a more efficient strategy to solve metabolite
labeling than the iterative averaging isotopomer method: by
casting the problem in terms of the new concept of cumomers
(cumulated isotopomers fractions), the isotopomer labeling can
be obtained from the solution to a cascade of linear equations.
The EMU method uses the knowledge of atomic transitions in the
reactions network to identify a set of variables containing
the minimum amount of information necessary to simulate
isotopic labeling in the system. The models resulting from the use
of this set of variables require significantly fewer equations to
be solved than for the cumomer case. The EMU method results
in computation times that are claimed to be several orders of
magnitude lower than for the cumomer method (Young et al.,
2008) and, hence, the possibility of tracking other labeling atoms
such as 2H, 15N, and 18O in tracer experiments with multiple
labeled substrates. Nonetheless, a recent study attributes similar
improvements in speed for the cumomer method based on careful
study of the labeling network topology (Weitzel, Wiechert, &
Nöh, 2007). Because the insights obtained form network
topology are applicable to the EMU method, significant increases
in performance are expected in the future (Weitzel, Wiechert, &
Nöh, 2007).

Not every 13C-based flux analysis strategy follows the
scheme shown in Figure 5. There are other alternatives: one
of them is to choose a set of amino acids with well-known

precursors and to extract the relative ratio of fluxes that contribute
to their labeling (Fischer & Sauer, 2003a). This method has been
used to perform the first large-scale experimental analysis of
intracellular flux distributions for 137 null mutants of B. subtilis
(Fischer & Sauer, 2005). Although this approach provides direct
evidence for the relative magnitude of each flux and has the great
benefit of using local network data around single metabolite
nodes, it is restricted to 10–15 pre-selected pathways directly
accessible from the isotopomer data (Sauer, 2006). Another
alternative involves using a nonlinear problem (NLP) solver to
search simultaneously among the total number of configurations
of fluxes and metabolite labeling patterns to match experimental
data (Riascos, Gombert, & Pinto, 2005; Vo & Palsson, 2006).
Whereas initial applications of this method were limited to
central carbon metabolism reactions, more recent work (Suthers
et al., 2007) makes use of much more comprehensive metabolic
networks and can, hence, take into account global metabolite
balances of cofactors (e.g., ATP, NADH, and NADPH), which
traditional 13C MFA does not. These studies integrate 13C MFA
with FBA and display the benefits of both methods.

As with every measurement, it is desirable to assign a
confidence interval to flux estimates. A traditional approach has
been to find a general mapping from the experimental data (i.e.,
isotopomer labeling and extracellular fluxes) to the best flux
estimate, linearize that mapping around the actual measured
experimental data, and map the confidence intervals from the
measured data on to the flux estimates (Arauzo-Bravo &
Shimizu, 2003; Dauner, Bailey, & Sauer, 2001; Schmidt et al.,
1999b; Wiechert & de Graaf, 1997; Wiechert et al., 1997).
Recently, nonlinear statistical methods (Gallant, 1987) have been
applied to take into account the intrinsic nonlinear nature of flux
analysis (Antoniewicz, Kelleher, & Stephanopoulos, 2006).
Under this scenario, each individual flux is increased from its
estimated value until the objective function for the recalculated
fluxes reaches the maximum value allowed for a given confidence
value. This marks the upper confidence limit. The crucial
difference with the linear approach is that the flux estimates
are recalculated for each individual flux increase. The lower
confidence limit is obtained by decreasing each independent flux
and following the same procedure. An alternative (but more
computationally intensive) way to take into account the nonlinear
nature of flux calculation is to use a Monte–Carlo approach in
which new experimental data is randomly generated within the
measurement errors and new flux estimates are calculated. By
doing this a large enough number of times, the probability
distribution of estimated fluxes provides the confidence intervals
and correlation between individual fluxes (Schmidt et al., 1999b;
Zhao & Shimizu, 2003).

D. Non-Stationary Flux Analysis

One of the traditional prerequisites for 13C-based flux analysis is
that the system must be in a metabolic and isotopic steady-state;
that is, fluxes and amino acid/metabolite labeling does not change
in time. This requirement means that the length of the experiment
should be significantly longer than the inverse of the growth rate,
1/m (Nöh & Wiechert, 2006; Wiechert & Nöh, 2005); that
requirement leads to impractically long experiments in the case
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of low growth rates, such as in the production phase of typical
bioprocesses. A way to circumvent this problem is to use the
information of the labeling of intracellular free amino acids as
input (Iwatani et al., 2007; Krömer et al., 2004). Intracellular
amino acids are continuously renewed, and represent the actual
flux state of the cells, as modified by protein turnover,
transamination, mRNA degradation and other effects (Grotkjaer
et al., 2004). Proteinogenic amino acids, on the other hand, are an
accumulation of intracellular amino acids throughout the entire
cultivation process and display much longer turnover rates.
Another strategy to overcome this difficulty is to use intracellular
metabolite labeling and non-stationary flux analysis. This type of
13C MFA assumes a changing metabolite labeling and tracks
these changes to estimate fluxes. Cumomer- and EMU-based
algorithms have been developed, and their application allows for
the quantification of time-resolved metabolite labeling patterns
and flux profiles (Antoniewicz et al., 2007c; Nöh, Wahl, &
Wiechert, 2006; Young et al., 2008). Those developments extend
13C-flux analysis to non-stationary conditions like batch and
fed-batch fermentations, and reduce the cost and duration of
labeling experiments.

IV. STRATEGIES FOR SYSTEMS-LEVEL
13C-BASED FLUX ANALYSIS

Metabolic flux distributions provide new insights into how
metabolism works. However, 13C-based flux analysis, so far, is
mainly focused on central metabolic pathways and biomass
synthesis pathways (e.g., amino acids). Because each pathway
could be controlled by several genes/enzymes, flux analysis
alone might be insufficient to reveal exact gene targets or
regulatory mechanisms in a complicated biological system.
Hence, 13C-based flux measurement has been integrated with
other ‘‘omics’’ tools to understand global metabolism.

1. Genomics combined with flux analysis: Most flux-analysis

studies focus on central metabolism and neglect other flux

routes that could contribute to biomass growth and metabolite

synthesis. Recently, 13C-based genome-scale flux models of

S. cerevisiae and E. coli have been developed to identify

annotated gene functions in more comprehensive metabolic

networks (Blank, Kuepfer, & Sauer, 2005a; Suthers et al., 2007).

For the E. coli case, for example, a reaction network that

consisted of 350 fluxes and 184 metabolites in E. coli, including

global metabolite balances on cofactors such as ATP, NADH,

and NADPH (Suthers et al., 2007), was developed. This

approach demonstrated possible key genes in an E. coli strain

engineered to produce amorphadiene (a precursor to the anti-

malarial drug artemisinin). Additionally, conventional genome-

scale flux-balance analysis (FBA) can determine intracellular

fluxes, but it requires choosing proper objective functions to

accurately describe certain metabolic conditions. The 13C-based

flux analysis approach can be used to verify the FBA model and

to provide useful metabolic regulation information. For instance,

different objective functions to predict fluxes in the genome-

scale FBA have been evaluated via isotopomer flux models

(Schuetz, Kuepfer, & Sauer, 2007). The study showed that

unlimited growth on glucose in oxygen- or nitrate-respiring

batch cultures is best described by nonlinear maximization of the

ATP yield with minimal enzyme usage, whereas under nutrient

scarcity in continuous cultures, linear maximization of the

overall ATP or biomass yields achieved the highest predictive

accuracy.

2. Transcriptomics and flux analysis: Metabolic fluxes and global

mRNA transcript analyses have been used to study the flexibility

of the metabolic network of E. coli to compensate for genetic

perturbations (Fong et al., 2006). Only activation of latent

pathways and flux changes in some tricarboxylic acid cycle

pathways were found to correlate with molecular changes at the

transcriptional level, whereas flux alterations in other central

metabolic pathways were not connected to changes in the

transcriptional network; those data suggest complex regulatory

mechanisms at transcription and enzyme activity levels. Similar

observations were reported from the study on E. coli strains

adapted to growth on lactate and S. cerevisiae grown under a

variety of carbon sources; that is, no clear qualitative corre-

lations between most transcriptional expression and metabolic

flux changes (Hua et al., 2007).

3. In vitro enzyme chemistry, proteomics, and flux analysis:
13C-labeling experiments combined with measurements of

enzyme activities and intracellular metabolite profiles are often

used to clarify the unknown pathways and support the results of

the in vivo flux measurement (Klapa, Aon, & Stephanopoulos,

2003; McKinlay et al., 2007; McKinlay & Vieille, 2008; Sauer

et al., 2004). For example, when the metabolism in a pykF

mutant of E. coli was studied, information on intracellular

metabolic flux distributions, enzyme activities, and intracellular

metabolite concentrations were integrated to quantitatively

reveal the regulation of phosphoenolpyruvate carboxylase,

malic enzyme, phosphofructokinase, acetate formation, and the

oxidative pentose phosphate (PP) pathway in the mutant (Al

Zaid Siddiquee, Arauzo-Bravo, & Shimizu, 2004). Proteomics

tools have also been used to provide labeling constraints for flux

analysis of individual strains in microbial communities (Shaikh

et al., 2008). This study shows that it is possible to analyze the

isotopomer distribution of amino acids from targeted organism

via highly expressed His-tagged green fluorescent protein

(GFP).

Multiple ‘‘omics’’ analysis, including transcriptomics, proteomics,

metabolomics, and fluxomics, are beginning to be integrated to

monitor cellular physiology, and those ‘‘omics’’ studies create a

new concept of functional genomics. The combination of those

high-throughput tools allows for the systematic quantification of the

interactions of thousands of metabolic network components under

genetic or environmental perturbations (Ishii et al., 2007; Krömer

et al., 2004).

V. CONCLUSIONS

We have strived to show that there is a significant value for
13C-based metabolic flux analysis in many fields. A series
of new techniques associated with 13C-flux analysis have
recently emerged, including: high-throughput cultivation
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systems, high-sensitivity, high-resolution mass spectrometry for
isotopomer analysis of metabolites (such as GC-MS, LC-MS,
ESI-TOF, or FT-ICR), high-performance modeling programs
for isotopomer flux analysis, and integrated flux analysis with
other ‘‘omics’’ tools. These techniques extend the application of
13C-based flux analysis to diverse applications from microbial to
mammalian cells to (1) discover or validate gene functions
involved in central metabolic pathways; (2) understand the
in vivo metabolisms under different culture conditions;
(3) provide information of the bottleneck pathways for biomass
or metabolite synthesis in engineered microorganisms; (4) and
identify pathogen-specific metabolic pathways for drug targets.
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Nöh K, Wahl A, Wiechert W. 2006. Computational tools for isotopically

instationary 13C labeling experiments under metabolic steady state

conditions. Metab Eng 8(6):554–577.
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